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Buckling

Introduction
– Buckling is a mode of failure generally 

resulting from structural instability due to 
compressive action on the structural 
member or element involved.

– Examples
• Overloaded metal building columns.
• Compressive members in bridges.
• Roof trusses.
• Hull of submarine.
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Buckling

Introduction
– Examples (cont’d)

• Metal skin on aircraft fuselages or wings with 
excessive torsional and/or compressive 
loading.

• Any thin-walled torque tube.
• The thin web of an I-beam with excessive 

shear load
• A thin flange of an I-beam subjected to 

excessive compressive bending effects.
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Buckling

Introduction
– In view of the above-mentioned examples, 

it is clear that buckling is a result of 
compressive action.

– Overall torsion or shear, as was discussed 
earlier, may cause a localized compressive 
action that could lead to buckling.

– Examples of buckling for commonly seen 
and used tools (components) are provided 
in the next few viewgraphs.



3

LECTURE 26. Columns: Buckling (pinned ends) (10.1 – 10.3) Slide No. 4
ENES 220 ©Assakkaf

Buckling

Introduction
Figure 1
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Buckling

Introduction

Figure 1 (cont’d)
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Buckling

Introduction
Figure 1 (cont’d)
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Buckling

Introduction
– In Fig. 1, (a) to (d) are examples of 

temporary or elastic buckling.
– While (e) to (h) of the same figure are 

examples of plastic buckling
– The distinctive feature of buckling is the 

catastrophic and often spectacular nature 
of failure.
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Buckling

Introduction
Figure 2. Reinforced Concrete
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Buckling

Introduction
Figure 3. Steel Beam Buckling
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Buckling

Introduction
– The collapse of a column supporting 

stands in a stadium or the roof of a building 
usually draws large headlines and cries of 
engineering negligence.

– On a lesser scale, the reader can witness 
and get a better understanding of buckling 
by trying to understand a few of the tests 
shown in Fig. 1. 
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Buckling

The Nature of Buckling
– In the previous chapters, we related load to 

stress and load to deformation.
– For these non-buckling cases of axial, 

torsional, bending, and combined loading, 
the stress or deformation was the 
significant quantity in failure.

– Buckling of a member is uniquely different 
in that the quantity significant in failure is
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Buckling

The Nature of Buckling
the buckling load itself.

– The failure (buckling) load bears no unique 
relationship to the stress and deformation 
at failure.

– Our usual approach of deriving a load-
stress and load-deformation relations 
cannot be used here, instead, the 
approach to find an expression for the 
buckling load Pcr.

LECTURE 26. Columns: Buckling (pinned ends) (10.1 – 10.3) Slide No. 13
ENES 220 ©Assakkaf

Buckling

The Nature of Buckling
– Buckling is unique from our other 

structural-element considerations in that it 
results from a state of unstable equilibrium.

– For example, buckling of a long column is 
not caused by failure of the material of 
which the column is composed, but by 
determination of what was a stable state of 
equilibrium to an unstable one. 
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Buckling

The Nature of Buckling
– Mechanism of Buckling

• Let’s consider Fig. 4, 5, and 6, and study them 
very carefully.

• In Fig. 4, some axial load P is applied to the 
column.

• The column is then given a small deflection by 
applying the small lateral force F.

• If the load P is sufficiently small, when the force 
F is removed, the column will go back to its 
original straight condition.
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Buckling
The Nature of Buckling
– Mechanism of Buckling

crPP < crPP < crPP <

F

Before
F

During
F

After
F

Stable Equilibrium

Figure 4

F
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F
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F

After
F
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Buckling

The Nature of Buckling
– Mechanism of Buckling

• The column will go back to its original straight 
condition just as the ball returns to the bottom 
of the curved container.

• In Fig. 4 of the ball and the curved container, 
gravity tends to restore the ball to its original 
position, while for the column the elasticity of 
the column itself acts as restoring force.

• This action constitutes stable equilibrium.
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Buckling

The Nature of Buckling
– Mechanism of Buckling

• The same procedure can be repeated for 
increased value of the load P until some critical 
value Pcr is reached, as shown in Fig. 5.

• When the column carries this load, and a lateral 
force F is applied and removed, the column will 
remain in the slightly deflected position.  The 
elastic restoring force of the column is not 
sufficient to return the column to its original
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Buckling

The Nature of Buckling
– Mechanism of Buckling

crPP = crPP = crPP =

F

Before
F

During
F

After
F

Precarious Equilibrium

Figure 5
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F
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F
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F

F

LECTURE 26. Columns: Buckling (pinned ends) (10.1 – 10.3) Slide No. 19
ENES 220 ©Assakkaf

Buckling

The Nature of Buckling
– Mechanism of Buckling

straight position but is sufficient to prevent 
excessive deflection of the column.

• In Fig. 5 of the ball and the flat surface, the 
amount of deflection will depend on the 
magnitude of the lateral force F.

• Hence, the column can be in equilibrium in an 
infinite number of slightly bent positions.

• This action constitutes neutral or precarious 
equilibrium.
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Buckling

The Nature of Buckling
– Mechanism of Buckling

• If the column is subjected to an axial 
compressive load P that exceeds Pcr, as shown 
in Fig. 6, and a lateral force F is applied and 
removed, the column will bend considerably.

• That is, the elastic restoring force of the column 
is not sufficient to prevent a small disturbance 
from growing into an excessively large 
deflection.
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Buckling
The Nature of Buckling
– Mechanism of Buckling

crPP > crPP > crPP >

F

Before
F

During
F

After
F

Unstable Equilibrium

Figure 6
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Buckling

The Nature of Buckling
– Mechanism of Buckling

• Depending on the magnitude of P, the column 
either will remain in the bent position or will 
completely collapse and fracture, just as the 
ball will roll off the curved surface in Fig. 6.

• This type of behavior indicates that for axial 
loads greater than Pcr, the straight position of a 
column is one of unstable equilibrium in that a 
small disturbance will tend to grow into an 
excessive deformation.
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Buckling

The Nature of Buckling
Definition
“Buckling can be defined as the sudden 
large deformation of structure due to a 
slight increase of an existing load under 
which the structure had exhibited little, 
if any, deformation before the load was 
increased.”



13

LECTURE 26. Columns: Buckling (pinned ends) (10.1 – 10.3) Slide No. 24
ENES 220 ©Assakkaf

Buckling of Long Straight 
Columns

Critical Buckling Load
– The purpose of this analysis is to 

determine the minimum axial compressive 
load for which a column will experience 
lateral deflection.

– Governing Differential Equation:
• Consider a buckled simply-supported column of 

length L under an external axial compression 
force P, as shown in the left schematic of Fig. 
7. The transverse displacement of the buckled 
column is represented by δ. 
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Buckling of Long Straight 
Columns

Critical Buckling Load

(a)
(b)

P
P

Py

Figure 7

y
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Critical Buckling Load
– Governing Differential Equation:

• The right schematic of Fig. 7 shows the forces 
and moments acting on a cross-section in the 
buckled column. Moment equilibrium on the 
lower free body yields a solution for the internal 
bending moment M, 

0=+MPy (1)

Buckling of Long Straight 
Columns
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Buckling of Long Straight 
Columns

Critical Buckling Load
– Governing Differential Equation (cont’d):

• Recall the relationship between the moment M
and the transverse displacement y for the 
elastic curve,

• Eliminating M from Eqs. 1 and 2 results in the 
governing equation for the buckled slender 
column, 

M
dx
dyEI =2

2
(2)
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Buckling of Long Straight 
Columns

Critical Buckling Load
– Governing Differential Equation (cont’d):

– Buckling Solution:
• The governing equation is a second order 

homogeneous ordinary differential equation 
with constant coefficients and can be solved by 
the method of characteristic equations. The 
solution is found to be, 

02

2

=+ y
EI
P

dx
yd

(3)
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Buckling of Long Straight 
Columns

Critical Buckling Load
– Buckling Solution (cont’d):

• Where p2 = P/EI.  The coefficients A and B can 
be determined by the two boundary conditions, 
y(0) = 0 and y(L) = 0, which yields,

pxBpxAxy cossin)( += (4)

0sin
0

=
=
pLA

B
(5)
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Buckling of Long Straight 
Columns

Critical Buckling Load
– Buckling Solution (cont’d):

• The coefficient B is always zero, and for most 
values of m × L the coefficient A is required to 
be zero.  However, for special cases of m × L, 
A can be nonzero and the column can be 
buckled. The restriction on m × L is also a 
restriction on the values for the loading F; these 
special values are mathematically called 
eigenvalues.  All other values of F lead to trivial 
solutions (i.e. zero deformation). 
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Buckling of Long Straight 
Columns

Critical Buckling Load
– Buckling Solution (cont’d):

• Since p2 = P/EI, therefore,
L
n

LLL
p

npL
pL

ππππ

ππππ

 ,,3 ,2 , ,0      

or
 ,,3 ,2 , ,0             

0sin      

L

L

=

=⇒
=

(6)

( ) ( )
2

22

2

22

2

22

2

2

,,3,2, ,0
L
EIn

L
EI

L
EI

L
EIP ππππ

L= (7)
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Buckling of Long Straight 
Columns

Critical Buckling Load
– Buckling Solution (cont’d):

• Or

• The lowest load that causes buckling is called 
critical load (n = 1). 

L3,2,1,0for      
2

=





= n
L
nEIP π (8)

2

2

L
EIPcr

π
= (9)
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Buckling of Long Straight 
Columns

Critical Buckling Load, Pcr
The critical buckling load (Euler Buckling) 
for a long column is given by

where
E = modulus of elasticity of the material
I = moment of inertia of the cross section
L = length of column

2

2

L
EIPcr

π
= (9)
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Buckling of Long Straight 
Columns

Critical Buckling Load
– Equation 9 is usually called Euler's formula.  

Although Leonard Euler did publish the governing 
equation in 1744, J. L. Lagrange is considered the 
first to show that a non-trivial solution exists only 
when n is an integer. Thomas Young then 
suggested the critical load (n = 1) and pointed out 
the solution was valid when the column is slender
in his 1807 book. The "slender" column idea was 
not quantitatively developed until A. Considère
performed a series of 32 tests in 1889. 
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Buckling of Long Straight 
Columns

Critical Buckling Load
Shape function:

• Substituting the expression of P in Eq. 9, into 
Eq. 4, and noting that B = 0, the shape function 
for the buckled shape y(x) is mathematically 
called an eigenfunction, and is given by,

( ) 





=
L
xnAxy πsin (10)
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Buckling of Long Straight 
Columns

Critical Buckling Stress
– The critical buckling normal stress σn is 

found as follows:
When the moment of inertia I in Eq. 9 is 
replaced by Ar2, the result is

where
A = cross-sectional area of column

r = radius of gyration =

( ) cr
cr

rL
E

A
P σπ

== 2

2

/
(11)

A
I
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Buckling of Long Straight 
Columns

Critical Buckling Stress
The critical buckling normal stress is given 
by

Where
r = radius of gyration =

(L/r) = slenderness ratio of column   

( )2
2

/ rL
E

cr
πσ =

A
I

(12)
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Buckling of Long Straight 
Columns

Critical Buckling Load and Stress
– The Euler buckling load and stress as 

given by Eq. 9 or Eq. 12 agrees well with 
experiment if the slenderness ratio is large 
(L/r > 140 for steel columns).

– Short compression members (L/r < 140 for 
steel columns) can be treated as 
compression blocks where yielding occurs 
before buckling.
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Buckling of Long Straight 
Columns

Critical Buckling Load and Stress
– Many columns lie between these extremes 

in which neither solution is applicable.
– These intermediate-length columns are 

analyzed by using empirical formulas to be 
described later.

– When calculating the critical buckling for 
columns, I (or r) should be obtained about 
the weak axis.
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Buckling of Long Straight 
Columns

Review of Parallel-Axis Theorem for 
Radius of Gyration
– In dealing with columns that consist of 

several rolled standard sections, it is 
sometimes necessary to compute the 
radius of gyration for the entire section for 
the purpose of analyzing the buckling load.

– It was shown that the parallel-axis theorem 
is a useful tool to calculate the second
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Buckling of Long Straight 
Columns

Review of Parallel-Axis Theorem for 
Radius of Gyration
– Moment of area (moment of inertia) about 

other axes not passing through the 
centroid of the overall section.

– In a similar fashion, the parallel-axis 
theorem can be used to find radii of 
gyration of a section about different axis 
not passing through the centroid. 
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Buckling of Long Straight 
Columns

Review of Parallel-Axis Theorem for 
Radius of Gyration
– Consider the two channels, which are 

laced a distance of 2a back to back.

C

CC

C x
xxx

xxx r
A
I

A
I

A
IrII ====⇒=

secsecoverall 2
2

   2

( ) ( ) ( )
( ) 22

sec

22
sec
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22
sec

2
sec

2
sec

2
sec

2
2

    

222

dr
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drA
A
I

r

drAdArAdAII

C

C

CCC

y
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y

yyyy

+=
+

==⇒

+=+=+=

(13)

(14)

Lacing bars
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y

y

2d
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Buckling of Long Straight 
Columns

Parallel-Axis Theorem for Radius of 
Gyration

Eqs. 13 and 14 indicate that the radius of 
gyration for the two channels is the same 
as that for one channel, and 

( )22
Cyy xarr

C
++= (15)

dxa C =+ where

Lacing bars

xx

y

y

2d

xC2a
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Buckling of Long Straight 
Columns

Example 1
A 3-m column with the cross section shown 
in Fig. 8 is constructed from two pieces of 
timber.  The timbers are nailed together so 
that they act as a unit.  Determine (a) the 
slenderness ratio, (b) the Euler buckling 
load (E = 13 GPa for timber), and (c) the 
axial stress in the column when Euler load 
is applied.
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Buckling of Long Straight 
Columns

Example 1 (cont’d)

150 mm

150 mm

50 mm 50 mm

50 mm

Figure 8

50 mm
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Buckling of Long Straight 
Columns

Example 1 (cont’d)
Properties of the cross section:

( )( )
( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( )

3.32
000,15

10625.15

mm 10625.1515050
12
150150

12
1

mm 1013.5325100
3
175150

3
112550

3
1

bottom from mm 0.75
000,15

1505075501505025
mm 000,15501502

6
min

4633

46333

2

=
×

===

×=+=

×=−+=

=
×++×

=

==

A
I

A
Ir

I

I

y

A

y

x

x

C

150 mm

150 mm

50 mm 50 mm

50 mm

50 mm
75 mm

N.A.
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Buckling of Long Straight 
Columns

Example 1 (cont’d)
(a) Slenderness Ratio:

(b) Euler Buckling Load:

(c) Axial Stress:

93
27.32

3000ratio sSlendernes ===
r
L

( )( )
( )

kN 75.222
3

10625.15 1013
2

692

2

2

=
××

==
−ππ

L
EI

P y
cr

(C) MPa 85.14
1015
75.222

3 =×
== −A

Pcrσ
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Buckling of Long Straight 
Columns

Example 2
A WT6 × 36 structural steel section is used for 
an 18-ft column.  Determine
(a) The slenderness ratio.
(b) The Euler buckling load.  Use E =   

29×103 ksi.
(c) The axial stress in the column when 

Euler load is applied.
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Buckling of Long Straight 
Columns

Example 2 (cont’d)
For a WT6 × 36 section (see Fig 9, or Appendix 
B of Textbook:

in 48.1              in 6.10 min
2 == rA

( )
( )( )

(C) ksi 43.13
6.10
4.142  (c)

kips 4.142
9.145

6.10000,29
/

  (b)

(slender) 1469.145
48.1
1218  a)(

2

2

2

===

===

≅=
×

=

A
P

rL
EAP

r
L

cr

cr

σ

ππ
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Buckling of Long Straight 
Columns

Example 2 (cont’d)

Figure 9
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Buckling of Long Straight 
Columns

Example 3
Two C229 × 30 structural steel channels 
are used for a column that is 12 m long.  
Determine the total compressive load 
required to buckle the two members if
(a) They act independently of each other.  

Use E = 200 GPa.
(b) They are laced 150 mm back to back 

as shown in Fig. 10.
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Buckling of Long Straight 
Columns

Example 3 (cont’d)

Lacing bars

xx

y

y

150 mm

Figure 10
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Buckling of Long Straight 
Columns

Example 3 (cont’d)
(a) Two channels act independently:

• If the two channels are not connected and each 
acts independently, the slenderness ratio is 
determined by using the minimum radius of 
gyration rmin of the individual section

• For a C229 × 30 section (see Fig 11, or 
Appendix B of Textbook):

2
min mm 3795                    mm 3.16 === Arr y
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Buckling of Long Straight 
Columns

Example 3 (cont’d)

Figure 11
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Buckling of Long Straight 
Columns

Example 3 (cont’d)

• (b) For a C229 × 30 section (see Fig 11, or 
Appendix B of Textbook):

( )
( ) ( ) ( )[ ]

( )
kN 27.6N 1064.27

2.736
103795 2 10200

/

(slender) 2.736
3.16

1012

3
2

692

2

2

3

=×=
××

==

=
×

=

−ππ
rL
EAP

r
L

cr

mm 1001.1                    mm10 3.25

mm 8.14                    mm 8.81
646

min

×=×=

==

yx

C

II
xr

Lacing bars

xx

y

y

150 mm

xC = 14.8 mm
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Buckling of Long Straight 
Columns

Example 3 (cont’d)
( ) ( )

( ) ( )[ ]

( ) mm 3.91
37952

1023.63                  

mm 1023.638.147537951001.122

7.81
37952

106.50mm 106.50103.2522

6

26262

6
266

=
×

==⇒

×=++×=+=

=
×

==⇒×=×==

A
I

r

AdII

A
IrII

y
y

yy

x
xxx

C

C

( )
( ) ( )[ ]

( )
kN 3.694

9.146
103795210200

/

9.146
7.81

1012 e,  therefor,7.81

2

692

2
min

2

3

min
min

=
××

==∴

=
×

===

−ππ
rL
EAP

r
Lrr

cr

x

Lacing bars
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y

y

150 mm
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Buckling of Long Straight 
Columns

Example 3 (cont’d)
– An alternate solution for finding rx and ry:

• Using Eqs. 13 and 15,

• Therefore,
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The slight difference in the result is due to round-off errors.


