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e Buckling _

m Introduction

— Buckling is a mode of failure generally
resulting from structural instability due to
compressive action on the structural
member or element involved.

— Examples
» Overloaded metal building columns.
» Compressive members in bridges.
* Roof trusses.
* Hull of submarine.
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Buckling

m [ntroduction

— Examples (cont'd)

* Metal skin on aircraft fuselages or wings with
excessive torsional and/or compressive
loading.

* Any thin-walled torque tube.

* The thin web of an I-beam with excessive
shear load

* A thin flange of an I-beam subjected to
excessive compressive bending effects.
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Buckling

m Introduction

— In view of the above-mentioned examples,
it is clear that buckling is a result of
compressive action.

— Overall torsion or shear, as was discussed
earlier, may cause a localized compressive
action that could lead to buckling.

— Examples of buckling for commonly seen
and used tools (components) are provided
in the next few viewgraphs.
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m [ntroduction

Figure 1
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m Introduction

~ Figure 1 (cont’d)
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m Introduction
Figure 1 (cont’d)
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m Introduction

—In Fig. 1, (a) to (d) are examples of
temporary or elastic buckling.

— While (e) to (h) of the same figure are
examples of plastic buckling

— The distinctive feature of buckling is the
catastrophic and often spectacular nature
of failure.
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m Introduction
Figure 2. Reinforced Concrete
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m Introduction
Figure 3. Steel Beam Buckling
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Buckling

m Introduction

— The collapse of a column supporting
stands in a stadium or the roof of a building
usually draws large headlines and cries of
engineering negligence.

— On a lesser scale, the reader can witness
and get a better understanding of buckling
by trying to understand a few of the tests
shown in Fig. 1.
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Buckling

m The Nature of Buckling

—In the previous chapters, we related load to
stress and load to deformation.

— For these non-buckling cases of axial,
torsional, bending, and combined loading,
the stress or deformation was the
significant quantity in failure.

— Buckling of a member is uniquely different
in that the quantity significant in failure is
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Buckling

m The Nature of Buckling
the buckling load itself.

— The failure (buckling) load bears no unique
relationship to the stress and deformation
at failure.

— Our usual approach of deriving a load-
stress and load-deformation relations
cannot be used here, instead, the
approach to find an expression for the
buckling load P,,.
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Buckling

m The Nature of Buckling

— Buckling is unique from our other
structural-element considerations in that it
results from a state of unstable equilibrium.

— For example, buckling of a long column is
not caused by failure of the material of
which the column is composed, but by
determination of what was a stable state of
equilibrium to an unstable one.
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m The Nature of Buckling

— Mechanism of Buckling

 Let’s consider Fig. 4, 5, and 6, and study them
very carefully.

* In Fig. 4, some axial load P is applied to the
column.

* The column is then given a small deflection by
applying the small lateral force F.
+ If the load P is sufficiently small, when the force

F is removed, the column will go back to its
original straight condition.
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m The Nature of Buckling
— Mechanism of Buckling

Figure 4

P<P, P<P, P<P,
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m The Nature of Buckling

— Mechanism of Buckling

* The column will go back to its original straight
condition just as the ball returns to the bottom
of the curved container.

* In Fig. 4 of the ball and the curved container,
gravity tends to restore the ball to its original
position, while for the column the elasticity of
the column itself acts as restoring force.

» This action constitutes stable equilibrium.
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m The Nature of Buckling

— Mechanism of Buckling

* The same procedure can be repeated for
increased value of the load P until some critical
value P, is reached, as shown in Fig. 5.

* When the column carries this load, and a lateral
force F is applied and removed, the column will
remain in the slightly deflected position. The
elastic restoring force of the column is not
sufficient to return the column to its original
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m The Nature of Buckling
— Mechanism of Buckling

Figure 5
P=P, P=P, P=P,

|
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F F F
After Q . e
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m The Nature of Buckling

— Mechanism of Buckling

straight position but is sufficient to prevent
excessive deflection of the column.

* In Fig. 5 of the ball and the flat surface, the
amount of deflection will depend on the
magnitude of the lateral force F.

* Hence, the column can be in equilibrium in an
infinite number of slightly bent positions.

 This action constitutes neutral or precarious
equilibrium.




7,

3
W1 - ENES 220 ©Assakkaf
pcx P

Buckling

m The Nature of Buckling

— Mechanism of Buckling

* If the column is subjected to an axial
compressive load P that exceeds P, as shown

in Fig. 6, and a lateral force F is applied and
removed, the column will bend considerably.

* That is, the elastic restoring force of the column
is not sufficient to prevent a small disturbance
from growing into an excessively large
deflection.
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= The Nature of Buckling Figure 6
— Mechanism of Buckling

P>P, P>P, P>P,
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m The Nature of Buckling

— Mechanism of Buckling

* Depending on the magnitude of P, the column
either will remain in the bent position or will
completely collapse and fracture, just as the
ball will roll off the curved surface in Fig. 6.

* This type of behavior indicates that for axial
loads greater than P, the straight position of a
column is one of unstable equilibrium in that a
small disturbance will tend to grow into an
excessive deformation.

"
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m The Nature of Buckling
Definition
“Buckling can be defined as the sudden
large deformation of structure due to a
slight increase of an existing load under
which the structure had exhibited little,
if any, deformation before the load was
increased.”

==
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Buckling of Long Straight

Columns

m Critical Buckling Load

— The purpose of this analysis is to
determine the minimum axial compressive
load for which a column will experience
lateral deflection.

— Governing Differential Equation:

» Consider a buckled simply-supported column of
length L under an external axial compression
force P, as shown in the left schematic of Fig.
7. The transverse displacement of the buckled
column is represented by o.
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Buckling of Long Straight

Columns
m Critical Buckling Load ¢P
P

Figure 7

(a) Simply supported column
subjected to axial load F (b) Free body diagram
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m Critical Buckling Load

— Governing Differential Equation:

» The right schematic of Fig. 7 shows the forces
and moments acting on a cross-section in the
buckled column. Moment equilibrium on the
lower free body yields a solution for the internal
bending moment M,

Py+M =0 (1)
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m Critical Buckling Load

— Governing Differential Equation (cont'd):

 Recall the relationship between the moment M
and the transverse displacement y for the
elastic curve,

El —

D _ i 2)
dx?

* Eliminating M from Eqgs. 1 and 2 results in the
governing equation for the buckled slender
column,
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m Critical Buckling Load
— Governing Differential Equation (cont’d):

d? Y, P
dx’ EI
— Buckling Solution:

* The governing equation is a second order
homogeneous ordinary differential equation
with constant coefficients and can be solved by
the method of characteristic equations. The
solution is found to be,

—y=0 (3)
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Columns

m Critical Buckling Load
— Buckling Solution (cont'd):

y(x) = Asin px + Bcos px (4)

« Where p? = P/EI. The coefficients A and B can
be determined by the two boundary conditions,
y(0) =0 and y(L) = 0, which yields,

B=0
Asin pL =0 (5)
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m Critical Buckling Load

— Buckling Solution (cont'd):

» The coefficient B is always zero, and for most
values of m x L the coefficient A is required to
be zero. However, for special cases of m x L,
A can be nonzero and the column can be
buckled. The restriction on m x L is also a
restriction on the values for the loading F; these
special values are mathematically called
eigenvalues. All other values of F lead to trivial
solutions (i.e. zero deformation).
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m Critical Buckling Load

— Buckling Solution (cont’d):
sin pL =0

= plL=0,7,27,37,-,nxw
or

7w 2rn 3rx nr
:Oa_a_a_a“'a_
P L L L L (6)

« Since p? = P/EI, therefore,

7°El (2f7°El 3)7°El  n’m’El %)

P=0" = p I

b
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m Critical Buckling Load

— Buckling Solution (cont’d):
* Or .
P= EI(%) for n=0,1,2,3-- (8)

» The lowest load that causes buckling is called
critical load (n = 1).

2
cr L2
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Buckling of Long Straight

Columns

m Critical Buckling Load, P,

The critical buckling load (Euler Buckling)
for a long column is given by

)
p T ©)
cr L

where

E = modulus of elasticity of the material
1 = moment of inertia of the cross section
L = length of column
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m Critical Buckling Load

— Equation 9 is usually called Euler's formula.
Although Leonard Euler did publish the governing
equation in 1744, J. L. Lagrange is considered the
first to show that a non-trivial solution exists only
when n is an integer. Thomas Young then
suggested the critical load (n = 1) and pointed out
the solution was valid when the column is slender
in his 1807 book. The "slender" column idea was
not quantitatively developed until A. Considére
performed a series of 32 tests in 1889.

"
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m Critical Buckling Load
Shape function:

 Substituting the expression of P in Eq. 9, into
Eq. 4, and noting that B = 0, the shape function
for the buckled shape y(x) is mathematically
called an eigenfunction, and is given by,

) Asin(%j (10)
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Loy o

m Critical Buckling Stress

— The critical buckling normal stress o, is
found as follows:

When the moment of inertia /in Eq. 9 is
replaced by Ar?, the result is
P, r’E

Lo _ - 11
A4 (L/r) Ter (1)

where
A = cross-sectional area of column

r = radius of gyration = \F
A
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m Critical Buckling Stress
The critical buckling normal stress is given

by
2
= ”_Ez (12)
(L/ r)
Where 7
r = radius of gyration :‘/Z
(L/r) = slenderness ratio of column
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m Critical Buckling Load and Stress

— The Euler buckling load and stress as
given by Eq. 9 or Eq. 12 agrees well with
experiment if the slenderness ratio is large
(L/r > 140 for steel columns).

— Short compression members (L/r < 140 for
steel columns) can be treated as
compression blocks where yielding occurs
before buckling.
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Columns

m Critical Buckling Load and Stress

— Many columns lie between these extremes
in which neither solution is applicable.

— These intermediate-length columns are
analyzed by using empirical formulas to be
described later.

— When calculating the critical buckling for
columns, I (or r) should be obtained about
the weak axis.
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Buckling of Long Straight

Columns

m Review of Parallel-Axis Theorem for
Radius of Gyration

— In dealing with columns that consist of
several rolled standard sections, it is
sometimes necessary to compute the
radius of gyration for the entire section for
the purpose of analyzing the buckling load.

— It was shown that the parallel-axis theorem
is a useful tool to calculate the second
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Columns

m Review of Parallel-Axis Theorem for
Radius of Gyration

— Moment of area (moment of inertia) about
other axes not passing through the
centroid of the overall section.

— In a similar fashion, the parallel-axis
theorem can be used to find radii of
gyration of a section about different axis
not passing through the centroid.
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m Review of Parallel-Axis Theorem for
Radius of Gyration

— Consider the two channels, which are
laced a distance of 2a back to back.

Ir _ 21)‘(‘ _ —
o Ao erall - 2A - _’;C (13)

=2(1yC+Asecd2)= 242 + 4, d) (r +d?)

sec’ ye

1 d?
BEYA L= secr i =i +d*  (14)

overall
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Columns

m Parallel-Axis Theorem for Radius of
Gyration
Eqgs. 13 and 14 indicate that the radius of

gyration for the two channels is the same
as that for one channel, and
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Buckling of Long Straight

Columns

m Example 1

A 3-m column with the cross section shown
in Fig. 8 is constructed from two pieces of
timber. The timbers are nailed together so
that they act as a unit. Determine (a) the
slenderness ratio, (b) the Euler buckling
load (E = 13 GPa for timber), and (c) the
axial stress in the column when Euler load
is applied.
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Columns
m Example 1 (cont’d)

50 mm

150 mm

Figure 8

50 mm 50 mm

50 mm

. 150 mm
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m Example 1 (cont’d)
Properties of the cross section:

fass A=2(150)(50)=15,000 mm’
= R 25(50x150): gs(;)og 75)(50x150) _ 25,0 mm from bottom

1

somm [ = 1(50)(125)3 +%(150)(75)3 -3 (100)(25)' = 53.13x10° mm*

LO mm 50 mm| |

I, = ! (150)(50) +7(50)(150) =15.625x10° mm"*

50 mm

6
z - . /mm \F 15.625x10° ..
150 mm 15000
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Columns

m Example 1 (cont’d)
(a) Slenderness Ratio:

Slenderness ratio = — = 3000 =93
r 3227 —
(b) Euler Buckling Load:
2RI 2 9 -6
, _TEL (13x10 )(lf.625><10 ) s
L (3)
(c) Axial Stress:
o=to_ 222‘7i =14.85 MPa (C)
A 15x10
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m Example 2

A WT6 x 36 structural steel section is used for
an 18-ft column. Determine

(a) The slenderness ratio.

(b) The Euler buckling load. Use E =
29x103 Ksi.

(c) The axial stress in the column when
Euler load is applied.
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m Example 2 (cont’d)

For a WT6 x 36 section (see Fig 9, or Appendix
B of Textbook:

A=10.6in" r. =1.48in

@ L1812 145 9~ 146 (slender)
r 148 —

2 2
(b) p, = FEA _*(29.000(10.6)

= =142.4 kips
(L/ry 145.9 T
P 1424
) o=—%L=—"—=13.43ksi(C
(©) y p ©
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__FLANGE _ grem
Depth Thick-  Thick- AXIS X=X AXIS ¥-¥
Desig- of Tee Width ness. ness. ! N r yc I S r
nation” (in.) (in.) (in.) (in.) (in.%) (in%) (in) (in) (in%) (in.3) (in.)
WTI8 X 115 17950 16470 1260 0760 934 67.0 525 4.0 470 57.1 373
% 80 18.005 12000 1020 0650 740 558 561 474 147 246 250
WT15 X 66 15.155 10.545 1.000 0,615 421 374 4.66 3.90 98.0 18.6 225
X 54 14915 10475 0760 0545 349 320 4.69 401 73.0 139 215
WT12 % 52 12030 12750 0750  0.500 189 200 3.51 259 130 203 291
X 47 12.155 9.065 0875 0515 186 203 3.67 299 54.5 12.0 1.98
X 42 12.050 9020 0770 0470 166 18.3 3.67 297 472 10.5 195
X 31 11.870 7040 0590 0430 13 15.6 379 346 172 490 1.38
WT9 X 38 9.105 11.035 0,680 0,425 71.8 983 2.54 1.80 76.2 3.8 2.6)
X 30 9.120 7.555 0.695 0415 64.7 9.29 271 2.16 250 6.63 1.69
X 25 8.995 7.495 0.570 0355 53.5 7.9 270 2.12 20.0 535 1.65
*X20 8.950 6.015 0.525 0.315 44.8 6.73 2.76 229 9.55 317 127
WT8 X 50 8,485 10.425 0.985 0.585 76.8 114 2.28 1.76 93.1 179 251
X 25 8.130 7.070 0.630 0.380 423 678 240 1.89 18.6 526 1.59
%20 8.005 6.995 0.505 0.305 331 535 237 1.81 14.4 4.12 1.57
% 13 7,845 5500 0345 0250 235 409 247 209 4.80 174 112
LWTT X 60 7240 14670 0340 0.5% 517 8.61 171 1.24 247 337 374
X 41 7455 10130 . 0855 0510 412 714 185 139 742 14.6 248
X 34 7020 10.035 0720 04lS 326 5.69 1.81 129 60.7 12.1 246
x 24 6.985 8030 0595 0340 24.9 448 1.87 135 257 6.40 191
X 15 6920 6730 0385 0270 19.0 355 207 1.58 9.79 291 149
x 11 6.870 5.000 0.335 0.230 14.3 2.91 2,14 176 3.50 140 1.04
WT6 X 60 6560 12320 LI0S 0710 43.4 822 1.57 172 280 3.13
% 48 6355 12160 0900 0550 20 ¢ i
. I 0.670 0430 232
X 25 734 6.095 8080 0640 0370 18.7 3.79 1.60 117 282 697 1.96
x 15 4.40 6.170 6520 0440  0.260 13.5 275 175 127 102 312 152
X8 236 5995 3990 0265  0.220 870 2.04 192 174 141 0706  0.773
o s s wce & con 1na1s 1980 n7s8 2RE 6.40 1.32 121 18 22.6 268
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Buckling of Long Straight
Columns

m Example 3

Two C229 x 30 structural steel channels

are used for a column that is 12 m long.

Determine the total compressive load

required to buckle the two members if

(a) They act independently of each other.
Use E = 200 GPa.

(b) They are laced 150 mm back to back
as shown in Fig. 10.
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(a) Two channels act independently:

« If the two channels are not connected and each
acts independently, the slenderness ratio is
determined by using the minimum radius of
gyration r,,;, of the individual section

» For a C229 x 30 section (see Fig 11, or
Appendix B of Textbook):

P =1, =16.3mm A=3795mm’

min
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Figure 11

TABLE B-6 Standard Channels {SI Units)
__FLANGE _ Web L AXISX-X o AXIS Y-¥
Thick-  Thick- I s I N
Desig- Area Depth Width ness ness (108 (103 r (10¢ (10® r xc
nation* (mm?) (mm) (mm) (mm) (mm) mm?) mm’) (mm) mm?) mm?®) (mm)  (nm)
C457 X 86 11030 4572 106.7 159 178 281 1230 160 741 87.2 . 259 219
X177 9870 457.2 104.1 159 15.2 261 1140 163 6.83 .- 831 264 218
X 68 8710 457.2 101.6 15.9 12,7 241 1055 167 . 629 79.0 26.9 220
X 64 8130 4572 100.3 15.9 114 231 1010 169 599 769 272 223
€381 X 74 9485 3810 94.4 16.5 18.2 168 882 133 4.58 61.9 220 203
X 60 7615 381.0 89.4 16.5 13.2 145 762 138 3.84 55.2 225 19.7
X 50 6425 381.0 86.4 16.5 10.2 131 688 143 338 51.0 23.0. 200
C305 % 45 5690 304.8 80.5 127 13.0 674 442 109 2.14 33.8 194 17.1
x37 4740 304.8 774 127 9.8 59.9 395 113 1.86 30.8 19.8 171
x 31 3930 304.8 74.7 127 72 537 .. 382 17 1.61 283 20.3 177
C254 X 45 5690 254.0 770 1Ll 171 429 339 86.9 1.64 - 270 170 16.5
x 37 4740 254.0 733 11.1 134 38.0 298 89.4 1.40 243 17.2 157
X 30 3795 2540 69.6 11.1 9.6 32.8 259 93.0 117 21.6 17.6 154
23 289 254.0 £6.0. 1l 6.1 281 221 983 0949 19.0 18.1 16.1
‘(‘770 X 30 3795 228.6 67.3 10,5 11.4 253 221 81.8 1.01 1192 16.3 14.8
X 22 2845 2286 63.1 10.5 72 212 185 86.4 0.803 16.6 16.8 149
x20 2540 228.6 61.8 10.5 5.9 199 . 174 884 0.733 15.7 17.0 15.3
C203 X 28 3555 203.2 64.2 9.9 124 183 180 71.6 0.824 16.6 152 144
o et R ne Aa e 12n 142 150 n A7 14.0 15.6 14.0
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L 12x10°
B = W =736.2 (slender)
74 2°(200x10°)[(2)(3795x10° )]
P, = = =27.64x10° N =27.
y o; T360) x10° N =27.6kN

) 150'mm, * (b) For a C229 x 30 section (see Fig 11, or

g - Appendix B of Textbook):
i v =81.8 mm x. =14.8 mm
...... - 1, =253x10"mm* 1,=1.01x10° mm

Xo=14.8 mm
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6
1, =21, =2(25.3x10°)=50.6x10° mm® = r, = \F B 50.3?;9150 -

I, _2(1 + 4d”) 2[101x10"’+379575+148 ] 63.23x10° mm’

6
o _\r 6323><10 63.23x10° _ o
2(3795)

3
7= =81.7, therefore,— L IZXIO

v = Vin =146.9
’ i 81.7
2 2 9 -\ ]
p o TEA 7 (20010 12(3Z9S><10 .
(L/r,) (146.9) _
14.8 mm
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— An alternate solution for finding r, and r;.
» Using Egs. 13 and 15,

r,=r, =81.8mm

r,=yr2 +latx ) =4(163) +(75+14.8)

=91.3mm

 Therefore, =r, =81.8 mm

min

The slight difference in the result is due to round-off errors.




