CHAPTER


## INTRODUCTION

eCompressed air is used for: $\checkmark$ Drilling rock
$\checkmark$ Driving piles
$\checkmark$ Operating hand tools
'Pumping
'Cleaning
PAVING BREAKER

## INTRODUCTION

\& In many instances the energy supplied by compressed air is the most convenient method of operating equipment and tools.
4 When air is compressed, it receives energy from the compressor. This energy is transmitted through a pipe or hose to the operating equipment, where a portion of the energy is converted into mechanical work.

## INTRODUCTION

\&The operations of compressing, transmitting, and using air will always result in a loss of energy, which will give an overall efficiency less than $100 \%$, sometimes considerably less.
*Things to consider:
$\checkmark$ Effect of altitude on capacity.
$\checkmark$ Loss of air pressure in pipe and hose systems.
$\checkmark$ Capacity factors.

## OVERVIEW

Selecting the right air compressor depends on many factors.
$>$ Compressor capacity and operating pressure depend on the tools used.
$>$ Engine and compressor lose power and capacity as altitude increases and temperature rises.
*Compressors are rated based on the cubic feet of atmospheric air they take in each minute with a specific discharge pressure, usually 100 psi.

## GLOSSARY OF GAS-LAW

## TERMS

Absolute Pressure: This is the total pressure measured from absolute zero. It is equal to the sum of the gauge and the atmospheric pressure, corresponding to the barometric reading. The absolute pressure is used in dealing with the gas laws. Absolute Temperature: This is the temperature of a gas measured above absolute zero. It equals degrees Fahrenheit plus 459.6 or, as more commonly used, 460.

## GLOSSARY OF GAS-LAW

## TERMS

Atmospheric Pressure: The pressure exerted by the earth's atmosphere at any given position. Also referred to as barometric pressure.
Celsius Temperature: This is the temperature indicated by a thermometer calibrated according to the Celsius scale. For this thermometer pure water freezes at $0^{\circ} \mathrm{C}$ and boils at $100^{\circ} \mathrm{C}$, at a pressure of 14.7 psi.

## GLOSSARY OF GAS-LAW

## TERMS

Fahrenheit Temperature: This is the temperature indicated by a thermometer calibrated according to the Fahrenheit scale. For this thermometer pure water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$, at a pressure of 14.7 psi . Thus, the number of degrees between the freezing and boiling point of water is 180.

## GLOSSARY OF GAS-LAW

## TERMS

## Relation between Fahrenheit and Celsius

 temperatures: A difference of 180' on the Fahrenheit scale equals $100^{\circ}$ on the Celsius scale; $1^{\circ} \mathrm{C}$ equals $1.8^{\circ} \mathrm{F}$. A Fahrenheit thermometer will read $32^{\circ}$ when a Celsius thermometer reads $0^{\circ}$. Let $T_{F}=$ Fahrenheit temperature and $T_{C}=$ Celsius temperature. For any given temperature the thermometer readings are expressed by the following equation:$$
\begin{equation*}
T_{F}=32+1.8 T_{C} \tag{1}
\end{equation*}
$$

## GLOSSARY OF GAS-LAW

## TERMS

Gauge Pressure: This is the pressure exerted by the air in excess of atmospheric pressure. It is usually expressed in psi or inches of mercury and is measured by a pressure gauge or a mercury manometer.
Temperature: Temperature is a measure of the amount of heat contained by a unit quantity of gas (or other material). It is measured with a thermometer or some other suitable temperature-indicating device.

## CHAPTER 11. COMPRESSED AIR

Slide No. 13

## GLOSSARY OF GAS-LAW

## TERMS

Vacuum: This is a measure of the extent to which pressure is less than atmospheric pressure. For example, a vacuum of 5 psi is equivalent to an absolute pressure of $14.7-5=9.7 \mathrm{psi}$.
Standard Conditions: Because of the variations in the volume of air with pressure and temperature, it is necessary to express the volume at standard conditions if it is to have a definite meaning. Standard conditions are an absolute pressure of $14.696 \mathrm{psi}(14.7 \mathrm{psi}$ is commonly used in practice) and a temperature of $60^{\circ} \mathrm{F}$.

## GLOSSARY

Gas-law equations are based on absolute temperature.
\& Absolute temperature is Fahrenheit plus $460^{\circ}$. \& Capacity is the volume of air delivered by a compressor.

GLOSSARY
\& Diversity factor is the ratio of the actual quantity of air required for all uses to the sum of the individual quantities for each use.

## TYPES OF COMPRESSION

> FIsothermal Compression: When a gas undergoes a change in volume without any change in temperature, this is referred to as isothermal expansion or compression. change in volume without gaining or losing heat, this is referred to as adiabatic expansion or compression.

## BOYLE'S LAW

* Boyle's Law states that when a gas is subjected to a change in volume due to a change in pressure, at a constant temperature, the product of the pressure times the volume will remain constant

$$
\begin{equation*}
P_{1} V_{1}=P_{2} V_{2}=K \tag{2}
\end{equation*}
$$

$P_{1}=$ initial absolute pressure
$V_{1}=$ initial volume
$P_{2}=$ final absolute pressure
$V_{2}=$ final volume
$K=a$ constant

## Example 1

Determine the final volume of $1,000 \mathrm{ft}^{3}$ of air when the gauge pressure is increased from 20 to 120 psi , with no change in temperature. The barometer indicates an atmospheric pressure of 14.7 psi .

$$
\begin{aligned}
& P_{1}=20+14.7=34.7 \mathrm{psi} \quad P_{1} V_{1}=P_{2} V_{2}=K \\
& P_{2}=120+14.7=134.7 \mathrm{psi} \\
& V_{1}=1,000 \mathrm{ft}^{3} \\
& V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{34.7(1000)}{134.7}=\underline{\underline{257.6 \mathrm{ft}^{3}}}
\end{aligned}
$$

## BOYLE'S AND CHARLES'

LAWS

* When a gas undergoes a change in volume or pressure with a change in temperature, Boyle's law will not apply
* Charles law states that the volume of a given weight of gas at constant pressure varies in direct proportion to its absolute temperature, that is

$$
\begin{equation*}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}=C \tag{3}
\end{equation*}
$$

$V_{1}=$ initial volume
$T_{1}=$ initial absolute temperature
$V_{2}=$ final volume
$T_{2}=$ final absolute temperature
$C=a$ constant

## BOYLE'S AND CHARLES'

LAWS
4 The laws of Boyle and Charles may be combined to give the following expression:

$$
\begin{equation*}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}=\mathrm{a} \text { constant } \tag{4}
\end{equation*}
$$

$V_{1}=$ initial volume
$T_{1}=$ initial absolute temperature
$P_{1}=$ initial absolute pressure
$V_{2}=$ final volume
$T_{2}=$ final absolute temperature
$P_{2}=$ final absolute pressure
$C=a$ constant

One thousand cubic feet of air, at initial gage pressure of 40 psi and temperature of $50^{\circ} \mathrm{F}$, is compressed to a volume of $200 \mathrm{ft}^{3}$ at a final temperature of $110^{\circ} \mathrm{F}$. Determine the final gauge pressure.
$P_{1}=40+14.7=54.7 \mathrm{psi}$
$V_{1}=1,000 \mathrm{ft}^{3}$
$T_{1}=460+50=510^{\circ} \mathrm{F}$
$P_{2}=\frac{P_{1} V_{1}}{T_{1}} \times \frac{T_{2}}{V_{2}}=\frac{54.7(1000)}{510} \times \frac{570}{200}=304.7 \mathrm{psi}$
$V_{2}=200 \mathrm{ft}^{3}$
$T_{2}=460+110=570^{\circ} \mathrm{F}$
Final Gauge $=304.7-14.7=\underline{291} \mathrm{psi}$

## ENERGY REQUIRED TO

## COMPRESS AIR

Recall that for constant temperature Boyle's law gives

$$
\begin{equation*}
P_{1} V_{1}=P_{2} V_{2}=K \tag{5}
\end{equation*}
$$

*For variable temperature,

$$
\begin{equation*}
P_{1} V_{1}^{n}=P_{2} V_{2}^{n}=K \tag{6}
\end{equation*}
$$

en = 1.4 for adiabatic compression
(no gaining or loosing of heat).
Energy is supplied to compress air by means of compressor

4 The work done may be obtained by integrating the following equation:

$$
\begin{equation*}
d W=V d P \tag{7}
\end{equation*}
$$

*But

$$
\begin{equation*}
V=\left(\frac{K}{P}\right)^{\frac{1}{n}} \tag{8}
\end{equation*}
$$

eHence

$$
\begin{equation*}
d W=\left(\frac{K}{P}\right)^{\frac{1}{n}} d P \tag{9}
\end{equation*}
$$

## ENERGY REQUIRED TO

 COMPRESS AIR* Integrating yields

$$
\begin{equation*}
W=K^{\frac{1}{n}} \int_{1}^{2} \frac{d P}{P^{\frac{1}{n}}} \tag{10}
\end{equation*}
$$

* For isothermal compression, $n=1$, therefore

$$
\begin{equation*}
W=K \int_{1}^{2} \frac{d P}{P}=-K \ln \left(\frac{P_{2}}{P_{1}}\right)+C \tag{11}
\end{equation*}
$$

4 It can be shown that the constant of integration $C$ is equal to zero. When $P_{1}=P_{2}$, no work is done and $C=0$

## ENERGY REQUIRED TO

## COMPRESS AIR

\& For isothermal compression of air the equation may be written as

$$
\begin{equation*}
W=K \ln \left(\frac{P_{2}}{P_{1}}\right)=(2.3026) K \log \left(\frac{P_{2}}{P_{1}}\right) \tag{12}
\end{equation*}
$$

Note that $K=P_{1} V_{1}$,

$$
\text { and } P_{1}=14.7 \mathrm{psi}=2,116.8 \mathrm{psf} \text { at standard }
$$

$$
W=(2.3026) K \log \left(\frac{P_{2}}{P_{1}}\right)=(2.3026)(2116.8) V_{1} \log \left(\frac{P_{2}}{P_{1}}\right)
$$

or

$$
\begin{equation*}
W=(4.873) V_{1} \log \left(\frac{P_{2}}{P_{1}}\right) \tag{13}
\end{equation*}
$$

*The value of W will be footpounds per cycle when V1 is expressed as cubic feet.
*One horsepower is equivalent to $33,000 \mathrm{ft}-\mathrm{lb}$ per minute.

## * If $V_{1}$ is replaced by $V$, the volume of

 free air per minute, the horsepower required to compress $V$ cu ft of air from an absolute pressure of $P_{1}$ to $P_{2}$ will be$$
\begin{equation*}
\mathrm{hp}=\frac{(4.873) V_{1} \log \left(\frac{P_{2}}{P_{1}}\right)}{33,000}=(0.1477) V \log \frac{P_{2}}{P_{1}} \tag{14}
\end{equation*}
$$

## Example 3

Determine the theoretical horsepower required to compress $100 \mathrm{ft}^{3}$ of free air per minute, measured at standard conditions, from atmospheric pressure to 100 psi gauge pressure.

$$
\begin{aligned}
& \mathrm{hp}=(0.1477) V \log \frac{P_{2}}{P_{1}}=0.1477(100) \log \frac{114.7}{14.7} \\
& \mathrm{hp}=14.77 \log 7.8 \\
& \mathrm{hp}=14.77(0.892)=13.2
\end{aligned}
$$

## ENERGY REQUIRED TO

 COMPRESS AIR* If air is compressed under other than isothermal conditions, the equation for the required horsepower may be derived in a similar manner
*The following equation gives the horsepower for for non-isothermal conditions:

$$
\begin{equation*}
\text { tions: } \mathrm{hp}=(0.0642) \frac{n V}{n-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right] \tag{15}
\end{equation*}
$$

## CHAPTER 11. COMPRESSED AIR

## Example 4

Determine the theoretical horsepower required to compress $100 \mathrm{ft}^{3}$ of free air per minute, measured at standard conditions, from atmospheric pressure to100 psi gauge pressure, under adiabatic conditions. The value for $n=1.4$ for air under adiabatic compression.

$$
\begin{aligned}
& \mathrm{hp}=(0.0642) \frac{n V}{n-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right] \\
& \mathrm{hp}=(0.0642) \frac{1.4(100)}{1.4-1}\left[\left(\frac{114.7}{14.7}\right)^{\frac{1.4-1}{1.4}}-1\right]=\underline{17.9 \mathrm{hp}}
\end{aligned}
$$

## EFFECT OF ALTITUDE

* When a given volume of air, measured as free air prior to its entering a compressor, is compressed, the original pressure will average 14.7 psi absolute pressure at sea level.
4 If the same volume of free air is compressed to the same gauge pressure at a higher altitude, the volume of the air after being compressed will be less than the volume compressed at sea level.


## EFFECT OF ALTITUDE

4The reason for this difference is that the density of a cubic foot of free air at $5,000 \mathrm{ft}$ is less than at sea level.
4 Thus, while a compressor may compress air to the same discharge pressure at a higher altitude, the volume supplied in a given time interval will be less at the higher altitude.

## CHAPTER 11. COMPRESSED AIR <br> EFFECT OF ALTITUDE

\& Because a compressor of a specified capacity actually supplies a smaller volume of air at a given discharge pressure at a higher altitude, it requires less power to operate a compressor at a higher altitude.
*The following table (Table 1) provides the theoretical horsepower required to compress 100 cu ft of free air per minute at different altitudes.
 barometric pressure of 14.7 psi, (sea level).

At higher altitudes the capacity of the compressor is reduced. This is a result of Boyle's law.

## BOYLE'S LAW


$P_{1}$ is the pressure of the free air when we are considering the use of a compressor.

## BOYLE'S LAW

$P_{1}(p s i)$ changes with altitude:

| Alt. | 0 | 1000 | 2000 | 3000 | 4000 | 5000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P $_{1}$ | 14.7 | 14.2 | 13.7 | 13.2 | 12.7 | 12.2 |

## EFFECT OF ALTITUDE

 Consider 100 cu ft of free air compressed to 100 psi gauge. Applying Boyle's law.

$V_{1}=100 \mathrm{cfm}$

$\mathbf{P}_{1}=$ atmospheric pressure
$\mathrm{P}_{2}=$ atmospheric pressure $+100$

## EFFECT OF ALTITUDE

Change in $\mathbf{V}_{2}$ (cu ft) with altitude, for $V_{1}=100 \mathrm{cf}$.

| Alt. | 0 | 1000 | 2000 | 3000 | 4000 | 5000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{1}$ | 14.7 | 14.2 | 13.7 | 13.2 | 12.7 | 12.2 |
| $\mathrm{~V}_{2}$ | 12.8 | 12.4 | 12.0 | 11.6 | 11.3 | 10.9 |

## STATIONARY

## COMPRESSORS

4 Stationary compressors are generally used for installations where there will be a requirement for compressed air over a long duration of time at fixed locations.
4 The compressors may be reciprocating or rotary types, single-stage or multistage.
*One or more compressors may supply the total quantity of air. *Stationary compressors may be driven by steam, electric motors, or internal combustion engines.

## CHAPTER 11. COMPRESSED AIR <br> STATIONARY COMPRESSORS

4 The installed cost of a single
compressor will usually be less than that for several compressors having the same capacity. However, several compressors provide better flexibility for varying load demands, and in the event of a shutdown for repairs the entire plant does not need to be stopped.


| Model | Motor $(H P)$ | ASME <br> Receiver size <br> (GAL) | Capacity <br> (ACFM) | Maz <br> Pressure <br> (PSIG) | Package Dimensions $\mathbf{L x V} \mathbf{y H}$ | Net Net Veight <br> (lb) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 234002 | 2 | 80 (Hor.) | 7 | 175 | 67*22*42 | 440 |
| 2340N2 | 2 | 80 (Vert.) | 7 | 175 | 36:19*69 | 550 |
| 234003 | 3 | 80 (Hor.) | 9.1 | 175 | 67*22*42 | 440 |
| 2340N3 | 3 | 80 (Vert.) | 9.1 | 175 | 36*19*69 | 550 |
| 2340 L5 | 5 | 60 (Vert.) | 15.2 | 175 | 35*19*70 | 450 |
| 2475N5 | 5 | 80 (Vert.) | 17 | 175 | 37*28*70 | 500 |
| 247505 | 5 | 80 (Hor.) | 17 | 175 | $69 \times 23 \times 45$ | 535 |
| 2475N7.5 | 7.5 | 80 (Vert.) | 24.2 | 175 | 37*28*70 | 510 |
| 2545010 | 10 | 80 (Hor.) | 35.2 | 175 | 68*29*47 | 730 |
| 2545E10 | 10 | 120 (Hor.) | 35.2 | 175 | 72*29*52 | 835 |
| 2545N10 | 10 | 80 (Vert.) | 35.2 | 175 | 42x29*74 | 730 |
| 2545 K 10 | 10 | 120 (vert.) | 35.2 | 175 | $42 \times 30 \times 77$ | 835 |
| 7100E10 | 10 | 120 (Hor.) | 37.2 | 175 | 72*28*57 | 1035 |
| 7100E15 | 15 | 120 (Hor.) | 50.5 | 175 | 72*28*57 | 1100 |
| 3000 E 20 | 20 | 120 (Hor.) | 73.5 | 175 | $72 \times 34 \times 61$ | 1360 |
| 3000 E 25 | 25 | 120 (Hor.) | 85.2 | 175 | $72 \times 34 \times 61$ | 1410 |
| 3000E30 | 30 | 120 (Hor.) | 100.7 | 175 | 72*34*61 | 1460 |
| Gas Engine Driven |  |  |  |  |  |  |
| 2475F11G |  |  |  |  |  |  |
| (Kohler) | 11 | 30 (Hor.) | 19 | 175 | 44*22*46 | 440 |
| (Kohler) | 11 | 4 (Hor.) | 19 | 175 | $42 \times 27 \times 28$ | 360 |
| 2475F11GH |  |  |  |  |  |  |
| (Honda) | 11 | 30 (Hor.) | 19 | 175 | 44:22*40 | 425 |

## RECIPROCATING

## COMPRESSORS

*A reciprocating compressor depends on a piston, which moves back and forth in a cylinder, for the compressing action.
4 The piston may compress air while moving in one or both directions.

4 For the former it is defined as single-acting, whereas for the latter it is defined as double-acting.
*A compressor may have one or more cylinders.

## RECIPROCATING

 COMPRESSORS

| ESV OPERATIONAL DATA |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | psig | bar (g) | $\mathrm{ACFM}^{\text {* }}$ | $\mathrm{m}^{3} / \mathrm{hr}$ | Nominal |  |
|  |  |  |  |  | HP | kw |
| $7 \times 5$ | 125 | 8.6 | 94 | 160 | 25 | 18.7 |
| $10 \times 7$ | 125 | 8.6 | 128 | 212 | 30 | 22.4 |
| $10 \times 7$ | 125 | 8.6 | 167 | 284 | 40 | 29.9 |
| 10x7 | 125 | 8.6 | 213 | 362 | 50 | 37.3 |
| $11 \times 7$ | 100 | 6.9 | 275 | 467 | 60 | 44.8 |



| PHE OPERATIONAL DATA |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | psig | bar (g) | ACFM $^{*}$ | $\mathrm{m} 3 / \mathrm{hr}$ | Nominal |  |
|  |  |  |  |  | HP | kw |
| $1085 \times 7$ | 500 | 345 | 320 | 544 | 125 | 93.3 |
| $1285 \times 7$ | 500 | 34.5 | 383 | 651 | 150 | 111.9 |
| $1287 \times 7$ | 250 | 17.2 | 511 | 868 | 150 | 1119 |
| 128584×7 | 750 | 51.7 | 350 | 595 | 150 | 1119 |
| 128.785×7 | 400 | 27.6 | 528 | 897 | 200 | 149.3 |
| $1486 \times 9$ | 500 | 34.5 | 560 | 952 | 200 | 149.3 |
| $1789 \times 9$ | 350 | 24.1 | 830 | 1411 | 250 | 186.4 |
| $178984.5 \times 9$ | 650 | 44.8 | 920 | 1563 | 350 | 261 |



These machines offer several advantages compared with reciprocating compressors, such as compactness, light weight, uniform flow, variable output, maintenancefree operation, and long life.


|  | Free Air Delivery- CFMXF |  |  | Receiver gallons | Length inches | Width inches | Height inches | Weight pounds |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Horsepower |  |  |  |  |  |  |  |  |
| 3 |  | 8 |  | 80 | 51 | 30 | 51 | 600 |
| 5 |  | 14 |  | 80 | 51 | 30 | 51 | 600 |
| 7.5 |  | 27 |  | 120 | 71 | 30 | 51 | 800 |
| 10 |  | 35 |  | 120 | 71 | 30 | 51 | 800 |
| 20 |  | 72 |  | 120 | 78 | 40 | 64 | 1.405 |
| 25 |  | 91 |  | 120 | 78 | 40 | 64 | 1.470 |
| 30 |  | 109 |  | 120 | 78 | 40 | 64 | 1.504 |
| 60 | 270 | 250 | 235 | n/a | 77 | 45 | 67 | 2.520 |
| 75 | 324 | 300 | 285 | n/a | 77 | 45 | 67 | 2.775 |
| 100 | 416 | 400 | 378 | nfa | 77 | 45 | 67 | 2950 |

## ROTARY SCREW

## COMPRESSORS

4The working parts of a screw compressor are two helical rotors.
*The male rotor has four lobes and rotates $50 \%$ faster than the female rotor, which has six flutes, with which the male motor meshes.

## CHAPTER 11. COMPRESSED AIR

Slide No. 53
ROTARY SCREW
COMPRESSORS
*As air enters and flows through the compressor, it is compressed in the space between the lobes and the flutes.
\& The inlet and outlet ports are automatically covered and uncovered by the shaped ends of the rotors as they turn.

## ROTARY SCREW

## COMPRESSORS

Figure 1. The Operation of Helical Rotors of Screw Compressor

eQuiet operation, with little or no loss in output.
\&Few moving parts, with minimum mechanical wear and few maintenance requirements.
eLittle or no pulsation in the flow of air, and hence reduced vibrations

# 4Automatic controls actuated by the output pressure, which regulate the speed of the driving unit and the compressor to limit the output to only the demand required. 

4 Portable compressors are more commonly used on construction sites where it is necessary to meet frequently changing job demands.
© The compressors may be mounted on rubber tires steel wheels, or skids. They are usually powered by gasoline or diesel engines and are available in singleor two-stage, reciprocating or rotary types.


## COMPRESSOR CAPACITY

* Air compressors are rated by the piston displacement in cubic feet per minute (cfm).
* However, the capacity of a compressor will be less than than the piston displacement because of valve and piston leakage and the air left in the end-clearance spaces of the cylinders.


## CHAPTER 11. COMPRESSED AIR

## COMPRESSOR CAPACITY

4 The capacity of a compressor is the actual volume of free air drawn into a compressor in a minute.
4 For a reciprocating compressor in good mechanical condition, the actual capacity ranges from $80 \%$ to $90 \%$ of the piston displacement.

## *The manufacturers usually give the following information:

- No. of low-pressure cylinders, 4
- No. of high-pressure cylinders, 2
- Diameter of low-pressure cylinders, 7 in.
- Diameter of high-pressure cylinders, 5 3/4 in.
- Length of stroke, 5 in.
- rpm, 870


## Example 5

Consider a 315 dm two stage portable compressor with the following specifications as given by the manufacturer:

No. of low-pressure cylinders = 4
Diameter of low-pressure cylinders $=7$ in
Length of stroke $=5$ in
Revolution per minute $(\mathrm{rpm})=870$
What is the efficiency of this compressor?
Area of cylinder $=\frac{\pi\left(\frac{7}{2}\right)^{2}}{(144)}=0.267 \mathrm{ft}^{2}$
Displacement per cylinder per stroke $=0.267\left(\frac{5}{12}\right)=\underline{0.111 \mathrm{ft}^{3}}$

## Example 5 (continued)

Displacement per minute $=4 \times 0.111 \times 870=386.3 \frac{\mathrm{ft}^{3}}{\mathrm{~min}}$
Efficiency $=\frac{315}{386.3} \times 100=\underline{81.5 \%}$

EFFECT OF ALTITUDE ON
CAPAĆITY OF COMPRESSOORS
*The capacity of an air compressor is normally rated on the basis of its performance at sea level, where the normal absolute barometric pressure is about 14.7 psi. higher altitude, such as $5,000 \mathrm{ft}$ above sea level, the absolute barometric pressure will be about 12.2 psi .
*At the higher altitude, the density is less and the weight of air in ft3 of free volume is less than at sea level.

## EFFECT OF ALTITUDE ON

 CAPACITY OF COMPRĒSOORSTable 2. The Effect of Altitude on the Capacity of Single-stage Air Compressors


## Example 6

A 100-cu-ft of free air at sea level is compressed to 100-psi gauge with no change in temperature. What is the volume at an altitude of 5,000 above sea level?
$P_{1}=12.2 \mathrm{psi}$
$P_{2}=100+12.2=112.2 \mathrm{psi}$
$V_{1}=100 \mathrm{ft}^{3}$
$V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{12.2(100)}{112.2}=\underline{10.87 \mathrm{ft}^{3}}$

## Example 7

A single-stage compressor having a sea-level capacity of 600 cfm will be operating at a pressure of 90 psi gauge. What will be the actual capacity at altitudes of $7,000 \mathrm{ft}$ and $12,000 \mathrm{ft}$ above sea level?

From Table 2 (Table 12-3 Textbook)
For $7,000 \mathrm{ft}$, the actual capacity will be:
Capacity $=600 \times 0.902=\underline{541.2 \mathrm{cfm}}$

For $12,000 \mathrm{ft}$, the actual capacity will be:
Capacity $=600 \times 0.818=\underline{490.8 \mathrm{cfm}}$

## INTERCOOLERS

* Intercoolers are installed between the stages of a compressor to reduce the temperature of the air and to remove moisture from air. *The reduction in temperature prior to additional compression can reduce the power required by as much as 10 to $15 \%$.
*An intercooler requires a continuous supply of circulating water to remove the heat from the air. It will require 1.0 to 1.5 gal of water per minute for each 100 cfm of air compressed.


## AFTERCOOLERS

* Aftercoolers are installed at the discharged side of a compressor to cool the air to the desired temperature and to remove moisture from the air.
\& Excess moisture in the air tends to freeze during expansion in air tools, and washes the lubricating oil out of tools, thereby reducing the lubricating efficiency.
*An air receiver should be installed on the discharge side of a compressor to equalize the compressor pulsations and to serve as a condensing chamber for the removal of water and oil vapors.


## RECEIVERS

# *A receiver should have a drain cock at its bottom to 

 permit the removal of the condensate.slts volume should be $1 / 10$ to 1/6 the capacity of the compressor.

4As air flows in a pipe or a hose, its pressure reduces due to friction.
4 The loss of pressure due to friction is a factor that must be considered in selecting the size of a pipe or a hose.

## LOSS OF AIR PRESSURE

The loss of pressure due to friction as air flows through a pipe or hose must be considered in selecting the size of pipe or hose to use on a job.

## CHAPTER 11. COMPRESSED AIR <br> PRACTICAL EXERCISE

What will be the pressure at the end of a compressed air pipeline used to transmit $\mathbf{3 , 0 0 0} \mathbf{c f m}$ of free air?

Hose

Pipe


## LOSS OF AIR PRESSURE IN

 PIPE DUE TO FRICTION*Failure to use a sufficiently large line may cause the air pressure to drop so low that it will not satisfactorily operate the tool to which it is providing power.
*When the cost of lost efficiency exceeds the cost of providing a larger line, it is cost-effective to use larger line.
*The following formula is used to determine the loss of pressure in a pipe due to friction:

$$
\begin{equation*}
f=\frac{C L}{r} \times \frac{Q^{2}}{d^{5}} \tag{16}
\end{equation*}
$$

## LOSS OF AIR PRESSURE IN

 PIPE DUE TO FRICTIONFFriction Formula:

$$
f=\frac{C L}{r} \times \frac{Q^{2}}{d^{5}}
$$

Where
$f=$ pressure drop, psi
$L=$ length of pipe, ft
$Q=$ volume of free air, $\mathrm{ft}^{3}$, per second
$r=$ ratio of compression, based on absolute press.
$d=$ actual ID of pipe, in
$C=$ experimental coefficient
\&For ordinary steel pipe, the value of $C$ is found to be $0.1025 / d^{0.31}$, hence

$$
\begin{equation*}
f=\frac{0.1025 L}{r} \times \frac{Q^{2}}{d^{5.31}} \tag{17}
\end{equation*}
$$

*A chart for determining the loss in pressure in a pipe is given in Figure 2 (Fig 11-5, Text).


## Example 8

Determine the pressure loss per 100 ft of pipe resulting from transmitting 1,000 cfm of free air, at 100 psi gauge pressure, through a $4-\mathrm{in}$. standard-weight steel pipe?
Using the equation:

$$
\begin{aligned}
& r=\frac{100+14.7}{14.7}=7.803 \\
& f=\frac{0.1025 L}{r} \times \frac{Q^{2}}{d^{5.31}}=\frac{0.1025(100)}{7.803} \times \frac{\left(\frac{1000}{60}\right)^{2}}{(4)^{5.31}}=0.232 \mathrm{psi}
\end{aligned}
$$

## Example 8 (continued)

- Using the chart (Figure 2, Fig 12-5, Text):
- Enter the chart at the top at 100 psi

4 Then proceed vertically downward to a point opposite $1,000 \mathrm{cfm}$
Then proceed parallel to the sloping guide lines to a point opposite the 4-in pipe
4 and then proceed vertically downward to the bottom of the chart

- The pressure drop is approximately 0.23 psi


## LOSS OF AIR PRESSURE

THROUGH FITTINGS AND HOSE
4 To provide for the loss of pressure resulting from the flow of air through screw-pipe fitting, it is common practice to convert a fitting to its equivalent length of pipe having the same nominal diameter.

## LOSS OF AIR PRESSURE

 THROUGH FITTINGS AND HOSE
# 4 This equivalent length should be added to the actual length of the pipe in determining pressure loss. 

sTable 3 (Table 11-5 Text)gives the equivalent length of standard-weight pipe.

## LOSS OF AIR PRESSURE

 THROUGH FITTINGS AND HOSETable 3. Equivalent Length (ft) of Standard-weight Pipe Having the Same Pressure Losses as Screwed Fittings

| Nominal <br> pipe size <br> (in.) | Gate <br> valve | Globe <br> valve | Angle <br> valve | Long-radius <br> ell or on run <br> of <br> teendard | Standard <br> ell or on <br> run of tee | Thee <br> thide <br> sidlet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | 0.4 | 17.3 | 8.6 | 0.6 | 1.6 | 3.1 |
| $\frac{3}{4}$ | 0.5 | 22.9 | 11.4 | 0.8 | 2.1 | 4.1 |
| 1 | 0.6 | 29.1 | 14.6 | 1.1 | 2.6 | 5.2 |
| $1 \frac{1}{4}$ | 0.8 | 38.3 | 19.1 | 1.4 | 3.5 | 6.9 |
| $1 \frac{1}{2}$ | 0.9 | 44.7 | 22.4 | 1.6 | 4.0 | 8.0 |
| 2 | 1.2 | 57.4 | 28.7 | 2.1 | 5.2 | 10.3 |
| $2 \frac{1}{2}$ | 1.4 | 68.5 | 34.3 | 2.5 | 6.2 | 12.3 |
| 3 | 1.8 | 85.2 | 42.6 | 3.1 | 6.2 | 15.3 |
| 4 | 2.4 | 112.0 | 56.0 | 4.0 | 7.7 | 20.2 |
| 5 | 2.9 | 140.0 | 70.0 | 5.0 | 10.1 | 25.2 |
| 6 | 3.5 | 168.0 | 84.1 | 6.1 | 15.2 | 30.4 |
| 8 | 4.7 | 222.0 | 111.0 | 8.0 | 20.0 | 40.0 |
| 10 | 5.9 | 278.0 | 139.0 | 10.0 | 25.0 | 50.0 |
| 12 | 7.0 | 332.0 | 166.0 | 11.0 | 29.8 | 59.6 |

## Example 9

A 4 in ordinary steel pipe with screwed fittings is used to transmit 1200 cfm of free air at an initial pressure of 90 psi gauge pressure. Determine the total loss of pressure in the pipline if the pipline includes the following items:

1450 ft of pipe, 6 standard on-run tees
4 gate valves, 3 angle Valves
Size of pipe $=4 \mathrm{in}$.
Length of pipe $=1450 \mathrm{ft}$
$Q=1200 \mathrm{cfm}$
$P_{1}=90$ psi gauge

## Example 9 (continued)

The equivalent length of the pipe will be:

| Pipe | $=1450 \mathrm{ft}$ |
| :--- | :--- |
| Gate valves: $4 \times 2.4$ (Table 3) | $=9.6 \mathrm{ft}$ |
| on-run tees: $6 \times 7.7$ (Table 3) | $=46.2 \mathrm{ft}$ |
| angle valves: $3 \times 56.0($ Table 3) | $=168 \mathrm{ft}$ |
| Total | 1673.8 ft |

$$
r=\frac{90+14.7}{14.7}=7.122
$$

$$
f=\frac{0.1025 L}{r} \times \frac{Q^{2}}{d^{5.31}}=\frac{0.1025(1673.8)}{7.122} \times \frac{\left(\frac{1200}{60}\right)^{2}}{(4)^{5.31}}=\underline{7.86 \mathrm{psi}}
$$

If the air from the end of the pipeline of the previous example is delivered through 50 ft of $3 / 4$ in hose to a rock drill that requires 130 cmf of air, determine the pressure at the drill.

From Example 9, the pressure at the end of the pipe: $90-7.86=82.14 \mathrm{psi}$
Thus for the drill:

$$
P_{1}=82.14 \mathrm{psi}
$$

$Q=130 \mathrm{cfm}$
Length of hose $=50 \mathrm{ft}$
Size of hose $=3 / 4$ in

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Table 4 <br> (Table 11-7, Text). Loss of Pressure (psi) in 50 Feet of Hose | (in.) | (psi) | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
|  | $\frac{1}{2}$ | 50 | 1.8 | 5.0 | 10.1 | 18.1 |  |  |  |  |  |  |  |  |  |  |
|  |  | 60 | 1.3 | 4.0 | 8.4 | 14.8 | 23.5 |  |  |  |  |  |  |  |  |  |
|  |  | 70 | 1.0 | 3.4 | 7.0 | 12.4 | 20.0 | 28.4 |  |  |  |  |  |  |  |  |
|  |  | 80 | 0.9 | 2.8 | 6.0 | 10.8 | 17.4 | 25.2 | 346 |  |  |  |  |  |  |  |
|  |  | 90 | 0.8 | 2.4 | 5.4 | 9.5 | 14.8 | 22.0 | 30.5 | 41.0 |  |  |  |  |  |  |
|  |  | 100 | 0.7 | 2.3 | 4.8 | 8.4 | 13.3 | 19.3 | 27.2 | 36.6 |  |  |  |  |  |  |
|  |  | 110 | 0.6 | 2.0 | 4.3 | 7.6 | 12.0 | 17.6 | 24.6 | 33.3 | 44.5 |  |  |  |  |  |
|  |  | 50 | 0.4 | 0.8 | 1.5 | 2.4 | 3.5 | 4.4 | 6.5 | 8.5 | 11.4 | 14.2 |  |  |  |  |
|  |  | 60 | 0.3 | 0.6 | 1.2 | 1.9 | 2.8 | 3.8 | 5.2 | 6.8 | 8.6 | 11.2 |  |  |  |  |
|  |  | 70 | 0.2 | 0.5 | 0.9 | 1.5 | 2.3 | 3.2 | 4.2 | 5.5 | 7.0 | 8.8 | 11.0 |  |  |  |
|  |  | 80 | 0.2 | 0.5 | 0.8 | 1.3 | 1.9 | 2.8 | 3.6 | 4.7 | 5.8 | 7.2 | 88 | 10.6 |  |  |
|  |  | 90 | 0.2 | 0.4 | 0.7 | 1.1 | 1.6 | 2.3 | 3.1 | 4.0 | 5.0 | 6.2 | 7.5 | 90 |  |  |
|  |  | 100 | 0.2 | 0.4 | 0.6 | 1.0 | 1.4 | 2.0 | 2.7 | 3.5 | 4.4 | 5.4 | 6.6 | 7.9 | 9.4 | 11.1 |
|  |  | 110 | 0.1 | 0.3 | 0.5 | 0.9 | 1.3 | 1.8 | 2.4 | 3.1 | 3.9 | 4.9 | 5.9 | 7.1 | 8.4 | 9.9 |
|  | 1 | 50 | 0.1 | 0.2 | 0.3 | 0.5 | 0.8 | 1.1 | 1.5 | 2.0 | 2.6 | 3.5 | 4.8 | 7.0 |  |  |
|  |  | 60 | 0.1 | 0.2 | 0.3 | 0.4 | 0.6 | 0.8 | 1.2 | 1.5 | 2.0 | 2.6 | 3.3 | 4.2 | 5.5 | 7.2 |
|  |  | 70 | - | 0.1 | 0.2 | 0.4 | 0.5 | 0.7 | 1.0 | 1.3 | 1.6 | 2.0 | 2.5 | 3.1 | 3.8 | 4.7 |
|  |  | 80 | - | 0.1 | 0.2 | 0.3 | 0.5 | 0.7 | 0.8 | 1.1 | 1.4 | 1.7 | 2.0 | 2.4 | 2.7 | 3.5 |
|  |  | 90 | - | 0.1 | 0.2 | 03 | 0.4 | 0.6 | 0.7 | 0.9 | 1.2 | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 |
|  |  | 100 | - | 0.1 | 0.2 | 0.2 | 0.4 | 0.5 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 | 1.8 | 2.1 | 2.4 |
|  |  | 110 | - | 0.1 | 0.2 | 0.2 | 03 | 0.4 | 0.6 | 0.7 | 0.9 | 1.1 | 1.3 | 1.5 | 1.8 | 2.1 |
|  | 14 | 50 | - | - | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.7 | 1.1 |  |  |  |  |
|  |  | 60 | - | - | - | 0.1 | 0.2 | 0.3 | 0.3 | 0.5 | 0.6 | 0.8 | 1.0 | 1.2 | 1.5 |  |
|  |  | 70 | - | - | - | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 | 0.7 | 0.8 | 1.0 | 1.3 |
|  |  | 80 | - | - | - | - | 0.1 | 0.2 | 02 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 1.0 |
|  |  | 90 | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
|  |  | 100 | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 | 0.6 | 0.7 |
|  |  | 110 | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.5 | 0.6 |
|  | 112 | 50 | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.6 |
|  |  | 60 70 | - | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 |
|  |  | 70 | - | - | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.4 |
|  |  | 80 | - | - | - | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 |
|  |  | 90 | - | - | - | - | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 |
|  |  | 100 | - | - | - | - | - | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 |
|  |  | 110 | - | - | - | - | - | - | - | - | - | - | 0.1 | 0.2 | 0.2 | 0.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



## CHAPTER 11. COMPRESSED AIR

DIVERSITY OR CAPACITY
FACTOR
\&While it is necessary to provide as much compressed air as will be required to supply the needs for all operating equipment, providing more air capacity than is actually needed is extravagant.

## CAPACITY FACTORS

All tools will not be operating at the same time.
Therefore Capacity (Diversity) factors are used in planning systems.


## CHAPTER 11. COMPRESSED AIR

Slide No. 93
DIVERSITY OR CAPACITY FACTOR
eln most cases, all the equipment nominally used on a project will not be operating at any given time.
*An analysis of the job should be made to determine the probable maximum actual prior to designing the compressed-air system.

## CHAPTER 11. COMPRESSED AIR

## DIVERSITY OR CAPACITY

## FACTOR

4For example, if 10 jackhammers are nominally drilling, normally no more 5 or 6 will be consuming air at any given time.
*The others will be out of use temporarily for changes in bits or drill steel or moving to new locations.

## DIVERSITY OR CAPACITY

## FACTOR

*The actual amount of air demand should be based on 5 or 6 drills instead of 10 .
s The same condition applies to other pneumatic tools.

* The diversity or capacity factor is the ratio of the actual load to the maximum mathematical load that will exist if all tools are operating at the same time.


## DIVERSITY OR CAPACITY

## FACTOR

*For example, if a jackhammer required 90 cfm of air, 10 hammers would require a total of $90 \times 10=900 \mathrm{cfm}$ of air if they all operated at the same time.
\# However, with only 5 hammers operating at the same time, the demand for air would be 450 cfm .
*The diversity factor would be $450 / 900=$ 0.5 .

## AIR REQUIRED BY PNEUMATIC <br> EQUIPMENT AND TOOLS

4The approximate quantities of compressed air required by pneumatic equipment and tools are given in Table 5 (Table 11-8, Text).
4 The quantities are based on continuous operation at a pressure of 90 psi gauge.

## AIR REQUIRED BY PNEUMATIC EQUIPMENT AND TOOLS

Table 5a. Quantities of Compressed air Required by Pneumatic Equipment

| Quantities of compressed air required by pneumatic equipment and <br> tools ${ }^{\dagger}$ |  |  |  |
| :--- | :---: | :---: | :---: |
|  | Capacity or size |  | Air |
| Equipment or tools | Weight (lb) | Depth of hole (ft) | consumption <br> (cfm) |
| Jackhammers | 10 | $0-2$ | $15-25$ |
|  | 15 | $0-2$ | $20-35$ |
|  | 25 | $2-8$ | $30-50$ |
|  | 35 | $8-12$ | $55-75$ |
|  | 45 | $12-16$ | $80-100$ |
|  | 55 | $16-24$ | $90-110$ |
| Paving breakers | 75 | $8-24$ | $150-175$ |
|  | 35 | - | $30-35$ |
|  | 60 | - | $40-45$ |
| Air pressure at 90 psi guage. | 80 | - | $50-50$ |

'Air pressure at 90 psi guage.


## EFFECTS OF ALTITUDE ON THE

CONSUMPTION OF AIR BY ROCK DRILLS
*The capacity of air compressor is the volume of free air that enters the compressor during a stated time, usually expressed in cfm.
\& Because of the lower atmospheric pressure at higher altitude due to decrease of air density, the quantity of air supplied by a compressor at a given gauge pressure will be less than at sea level.

## EFFECTS OF ALTITUDE ON THE

CONSUMPTION OF AIR BY ROCK DRILLS

* Therefore, it necessary to provide more compressor capacity at higher altitudes to assure adequate supply of air at the specified pressure to rock drills.
* The following table (Table 6 or Table 11-9 Text) provides representative factors to be applied to specific compressor capacities to determine the required capacities at different altitude.


## EFFECTS OF ALTITUDE ON THE CONSUMPTION OF AIR BY ROCK DRILLS

Table 6. Factors to be Used in Determining the Capacities of Compressed air Required by Rock Drills at Different Altitudes

| Alti- <br> tude (ft) | Number of drills |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|  | Factor |  |  |  |  |  |  |  |  |  |
| 0 | 1.0 | 1.8 | 2.7 | 3.4 | 4.1 | 4.8 | 5.4 | 6.0 | 6.5 | 7.1 |
| 1,000 | 1.0 | 1.9 | 2.8 | 3.5 | 4.2 | 4.9 | 5.6 | 6.2 | 6.7 | 7.3 |
| 2,000 | 1.1 | 1.9 | 2.9 | 3.6 | 4.4 | 5.1 | 5.8 | 6.4 | 7.0 | 7.6 |
| 3,000 | 1.1 | 2.0 | 3.0 | 3.7 | 4.5 | 5.3 | 5.9 | 6.6 | 7.2 | 7.8 |
| 4,000 | 1.1 | 2.1 | 3.1 | 3.9 | 4.7 | 5.5 | 6.1 | 6.8 | 7.4 | 8.1 |
| 5,000 | 1.2 | 2.1 | 3.2 | 4.0 | 4.8 | 5.6 | 6.3 | 7.0 | 7.6 | 8.3 |
| 6,000 | 1.2 | 2.2 | 3.2 | 4.1 | 4.9 | 5.8 | 6.5 | 7.2 | 7.8 | 8.5 |
| 7,000 | 1.2 | 2.2 | 3.3 | 4.2 | 5.0 | 5.9 | 6.6 | 7.4 | 8.0 | 8.7 |
| 8,000 | 1.3 | 2.3 | 3.4 | 4.3 | 5.2 | 6.1 | 6.8 | 7.6 | 8.2 | 9.0 |
| 9,000 | 1.3 | 2.3 | 3.5 | 4.4 | 5.3 | 6.2 | 7.0 | 7.7 | 8.4 | 9.2 |
| 10,000 | 1.3 | 2.4 | 3.6 | 4.5 | 5.4 | 6.3 | 7.1 | 7.9 | 8.6 | 9.4 |
| 12,000 | 1.4 | 2.5 | 3.7 | 4.6 | 5.6 | 6.6 | 7.4 | 8.2 | 8.9 | 9.7 |
| 15,000 | 1.4 | 2.6 | 3.9 | 4.7 | 5.9 | 6.9 | 7.7 | 8.6 | 9.3 | 10.2 |

Source: Compressed Air and Gas Institute.

## Example 11

A single drill requires a capacity of 600 cfm of air at sea level. What would be the required capacities at altitudes of $5,000 \mathrm{ft}$ and $15,000 \mathrm{ft}$ ?

Using Table 6 (Table 11-9, Text):
For an altitude of $5,000 \mathrm{ft}$ :
Required Capacity $=600 \times 1.2=720 \mathrm{cfm}$
For an altitude of $15,000 \mathrm{ft}$ :

$$
\text { Required Capacity }=600 \times 1.4=840 \mathrm{cfm}
$$

## THE COST OF

## COMPRESSED AIR

4 The Department of Energy (DOE) has determined that air compressors are one of the largest users of electricity in industry. Although at one time the DOE considered electric motors as the largest user of electricity, savings through improved electric motor efficiency are dwarfed by those available through improving the compressed air system design and operation

## THE COST OF

COMPRESSED AIR
eEnergy savings through improved design and operation of the air system can range from 20-50\%. Most facilities consider compressed air a utility on par with electricity, gas, and water. Unlike other utilities, few people know their cost per CFM.

## THE COST OF

 transmitting, including line losses.4 The cost of compressing should include the total cost of the compressor (both ownership and operation costs).
4 The cost is usually based on $1,000 \mathrm{cu} \mathrm{ft}$ of free air

## THE COST OF COMPRESSED AIR

## \& What are your costs per CFM?

Assumptions:
Motor Service Factor = 110\%
Power Factor = 0.9
A typical compressor produces 4 CFM per 1 HP
$1 \mathrm{HP}=110 \% \times 0.746 \mathrm{KW} / 0.9=0.912 \mathrm{KW}$
Therefore, $1 \mathrm{CFM}=0.228 \mathrm{~kW}$
At 0.06 \$/kW/hr : 1 CFM = \$0.0137/hr
Therefore, 10 CFM over 8000 hr will cost: $10 \times 8000 \times .0137$
= \$1096.

## Example 12

Determine the cost of compressing $1,000 \mathrm{ft}^{3}$ of free air to a gauge pressure of 100 psi by using a 600 dm, two sage portable compressor driven by a 180 p diesel engine. Assume that the following information will apply:

Annual ownership cost $=\$ 19,686$
Based on a 5 year life at $1,400 \mathrm{hr}$ per year
Fuel consumption per hr, $0.04 \times 180=7.2$ gal
Lubricating oil consumed per hr, 0.125 gal

*The loss of air through leakage in a transmission line can be large and costly
*Leakage results from:
$\checkmark$ poor pipe connections
$\checkmark$ loose valve stems
$\checkmark$ deteriorating hose
$\checkmark$ loose hose connections

## THE COST OF AIR LEAKS

*) f the cost of such leaks were more fully known, most of them would be eliminated.
*The rate of leakage through an opening of known size can be determined by the formula for the flow of air through an orifice.

## CHAPTER 11. COMPRESSED AIR

## THE COST OF AIR LEAKS

- In a typical plant, air leaks account for $20 \%$ of the total air usage!

8000 hr per year operation
Electrical costs $=0.06 \$ / \mathrm{kwhr}$
Line pressure $=100 \mathrm{psi}$
Plant Demand (cfm) » 400 cfm
Air leaks (cfm) » 20\% » 80 cfm
Total Compressor Demand» 480 cfm

## CHAPTER 11. COMPRESSED AIR

## THE COST OF AIR LEAKS

$$
400 \mathrm{cfm} \times 8000 \mathrm{hrs} \times .0137 / \mathrm{hr}=\$ 43,840
$$

$80 \mathrm{cfm} \times 8000 \mathrm{hrs} \mathrm{X} .0137 / \mathrm{hr}$
$=\$ 8,768$

TOTAL $=\$ \mathbf{5 2 , 6 0 8}$ used.
2. Air (cfm) requirement of each.
3. Pressure (gpsi) requirement of each
4. Piping and hose lengths

# COMPRESSOR 

 SELECTION5. Capacity factor.
6. Theoretical compressor size.
7. Economical compressor available, that exceeds
theoretical requirement and provides flexibility.
