

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS
 Slide No. 1

Analysis of Bolted Members

■ When tension in a member is transmitted by bolts, A then equal the net area A_{n} of the member and U is computed as follows:

$$
\begin{equation*}
U=1-\frac{\bar{x}}{L} \quad \leq 0.9 \tag{1}
\end{equation*}
$$

■ The length L used in above expression is equal to the distance between the first and the last bolts in the line.

Analysis of Bolted Members

Figure 1a. Values of \bar{x} for Different Shapes

(I)

Analysis of Bolted Members

Figure 1b. Values of \bar{x} for Different Shapes
(I)

(II)

Note $\bar{x}=\bar{y}$ in structural tee tables

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Analysis of Bolted Members

- The angle shown in Fig. 1a-I is connected at its ends to only one leg.
- The area effective in resisting tension can be appreciably increased by shortening the width of the unconnected leg and lengthening the width of the connected width (see Fig. 1a-I and II)
- \bar{x} is measured from the plane of the connection to the center of gravity (C.G.) or centroid of the whole section.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Slide No. 5

Analysis of Bolted Members

- Calculation of U for W Section
- In order to calculate U for a W section connected by its flange only, it is assumed that the section is split into two structural tees.
- Then, the value of \bar{x} used will be the distance from the outside edge of the flange to the C.G. of the structural tee as shown in Part II of Fig. 1b.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Analysis of Bolted Members

- Example 1

Determine the tensile design strength of a W10 $\times 45$ with two lines of $3 / 4$-in diameter bolts in each flange using A572 Grade 50 steel with $F_{y}=50 \mathrm{ksi}$ and $F_{u}=65 \mathrm{ksi}$ and the LEFD Specification. There are assumed to be at least three bolts in each line 4 in. on center, and the bolts are not staggered with respect to each other.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Analysis of Bolted Members

- Example 1 (cont'd)

The following properties of W10 $\times 45$ section are obtained from LRFD Manual (Page 1-20):

- $A=A_{g}=13.3 \mathrm{in}^{2}, d=10.1 \mathrm{in}$., $b_{f}=8.02 \mathrm{in}$., $t_{f}=0.62 \mathrm{in}$.
(a) Case I-Yielding of the Section:

$$
\phi_{t} P_{n}=\phi F_{y} A_{g}=0.90(50)(13.3)=598.5 \mathrm{k}
$$

(b) Case II-Net-section Fracture:

$$
A_{n}=13.3-4\left[\frac{3}{4}+\frac{1}{8}\right](0.62)=11.13 \mathrm{in}^{2}=A
$$

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Analysis of Bolted Members

- Example 1 (cont'd)

Referring to the tables for half of a W10 $\times 45$ (or WT5 $\times 22.5$), the value of \bar{x} is obtained as

$$
\bar{x}=0.907 \text { in. From LRFD, P. 1-49 }
$$

Then

$$
\begin{aligned}
& U=1-\frac{\bar{x}}{L}=1-\frac{0.907}{8}=0.89<0.9 \\
& A_{e}=U A=0.89(11.13)=9.91 \mathrm{in}^{2} \\
& \phi_{t} P_{n}=\phi_{t} F_{u} A_{e}=0.75(65)(9.91)=483.1 \mathrm{k}
\end{aligned}
$$

Therefore, design strength $=483.1 \mathrm{k}$

- Splice and gusset plates are usually used as statically loaded tensile connecting elements.
- According to the LRFD Manual, their strength can be determine from
- For yielding of connection elements:

$$
\begin{align*}
& \phi=0.90 \tag{1}\\
& R_{n}=A_{g} F_{y}
\end{align*}
$$

- For fracture of connection elements:

$$
\begin{align*}
& \phi=0.75 \tag{2}\\
& R_{n}=A_{n} F_{u} \text { with } A_{n} \leq 0.85 A_{g}
\end{align*}
$$

Members

- Example 2

A tension member W10 $\times 45$ with $F_{y}=50$ ksi and $F_{u}=65 \mathrm{ksi}$ is assumed to be connected at its ends with two $3 / 8 \times 12$-in plates as shown. If two lines of $3 / 4-$ in bolts are used in each plate, determine the design tensile force which the plates can transfer.

Connecting Elements for Tension

Members

- Example 2 (cont'd)

$$
\begin{aligned}
& \phi_{t} F_{y} A_{g}=0.9(50)\left[2\left(\frac{3}{8}\right)(12)\right]=405 \mathrm{k} \\
& A_{n} \text { of } 2 \text { plates }=(2)\left[\left(\frac{3}{8}\right)(12)-\left(\frac{3}{4}+\frac{1}{8}\right)(2)\left(\frac{3}{8}\right)\right]=7.69 \mathrm{in}^{2} \\
& 0.85 A_{g}=0.85\left[2\left(\frac{3}{8}\right)(12)\right]=7.65 \mathrm{in}^{2}<7.69 \\
& \therefore A_{n}=7.65 \mathrm{in}^{2} \\
& \phi_{t} P_{n}=\phi_{t} F_{u} A_{n}=0.75(65)(7.65)=372.9 \mathrm{k} \text { controls }
\end{aligned}
$$ Therefore,

$$
\phi_{\mathrm{t}} P_{n}=372.9 \mathrm{k}
$$

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Block Shear

- The design strength of a tension member is not always controlled by

$$
\phi_{t} F_{y} A_{g} \quad \text { or } \quad \phi_{t} F_{u} A_{g}
$$

or by the strength of the bolts or welds with which the member is connected.

- It may instead be controlled by its block shear strength as will be described.

Block Shear

- Failure due to Block Shear
- The failure of a member may occur along a path involving tension on one plane and shear on a perpendicular plane as shown in Fig. 2.
- In this figure, several possible block shear failures are shown.
- For these situations, it is possible for a "block" to tear out.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS
 Slide No. 15

Block Shear

Figure 2. Failure due to Block Shear

Block Shear

- Failure due to Block Shear

- When a tensile load applied to a particular connection is increased, the fracture strength of the weaker plane will be approached.
- That plane will not fall because it is restrained by the stronger plane.
- The load can be increased until the fracture strength of the stronger plane is reached.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Slide No. 17

Block Shear

- Failure due to Block Shear
- During this time, the weaker plane is in yielding.
- The total strength of the connection equals the fracture strength of the stronger plane plus the yield strength of the weaker plane.
- However, it is not realistic to add the fracture strength of one plane to the fracture strength of the plane to determine the block shear capacity of a particular member.

Block Shear

- Failure due to Block Shear

Block shear failure can be thought of as being a tearing or rupture failure and not a yielding failure at bolt holes.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Slide No. 19

Block Shear

- Failure due to Block Shear
- The member shown in Fig. 3a has a larger shear area and a small tensile area.
- Therefore, the primary resistance to a block shear failure is shearing and not tensile.
- The LRFD Specification states that it is logical to assume that when shear fracture occurs on this large shear-resisting area, the small tensile area has yielded.

Block Shear

Figure 3. Block Shear

(b) Free body of "block" that tends to shear out in angle of part a.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Block Shear

- Failure due to Block Shear
- Part (b) of Fig. 3 shows a free body of the block that tends to tear out the angle of Part a. This block shear is caused by the bolts bearing on the back of the bolts holes.
- When a member has a large tensile area and a small shear area, the block shear failure will be tensile and not shearing.

Block Shear

LRFD Specification on Block Shear

- The block shear design strength of a member is to be determined by

1. Computing the tensile fracture strength on the net section in one direction and adding to that value the shear yield strength on the gross area on the perpendicular segment.
2. Computing the shear fracture strength on the gross area subject to tension and adding it to the tensile yield strength on the net area subject to shear on the perpendicular segment.

- The expression to use is the one with larger rupture value.

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Slide No. 23

Block Shear

■ LRFD Specification on Block Shear
1.If $F_{u} A_{n t} \geq 0.6 F_{u} A_{n v}$, then shear yielding and tension fracture, and the following Eq. is used:

$$
\begin{equation*}
\phi R_{n}=\phi\left[0.6 F_{y} A_{g v}+F_{u} A_{n t}\right] \leq \phi\left[0.6 F_{u} A_{n v}+F_{u} A_{n t}\right] \tag{3}
\end{equation*}
$$

2.If $F_{u} A_{n t}<0.6 F_{u} A_{n v}$, then shear yielding and tension fracture, and the following Eq. is used:
$\phi R_{n}=\phi\left[0.6 F_{u} A_{n v}+F_{y} A_{g t}\right\rfloor \leq \phi\left[0.6 F_{u} A_{n v}+F_{u} A_{n t}\right]$
in which $\phi=0.75$, and

Block Shear

- LRFD Specification on Block Shear
$A_{g v}=$ gross area subjected to shear, in 2
$A_{g t}=$ gross area subjected to tension, in 2
$A_{n v}=$ net area subjected to shear, in 2
$A_{n t}=$ net area subjected to tension, in^{2}

Block Shear

■ Example 3
The A572 Grade 50 ($F_{u}=65 \mathrm{ksi}$) tension member shown is connected with three $3 / 4$-in bolts. Determine the block shearing strength of the member and its tensile strength.

Block Shear

- Example 3 (cont'd)

For L6 $\times 4 \times 1 / 2$, the LRFD Manual gives the following properties (P. 1-34 \& 1-35):

$$
A=4.72 \text { in }^{2} \text {, and } x \text { in unconnected leg }=0.986 \text { in. }
$$

The following areas can be computed:

$$
\begin{aligned}
& A_{g v}=(10)\left(\frac{1}{2}\right)=5.0 \mathrm{in}^{2} \\
& A_{g t}=(2.5)\left(\frac{1}{2}\right)=1.25 \mathrm{in}^{2} \\
& A_{n v}=\left[10-2.5\left(\frac{3}{4}+\frac{1}{8}\right)\right]\left(\frac{1}{2}\right)=3.91 \mathrm{in}^{2} \\
& A_{n t}=\left[2.5-\frac{1}{2}\left(\frac{3}{4}+\frac{1}{8}\right)\right]\left(\frac{1}{2}\right)=1.03 \mathrm{in}^{2}
\end{aligned}
$$

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Slide No. 27

Block Shear

- Example 3 (cont'd

$$
F_{u} A_{n t}=(65)(1.03)=66.9 \mathrm{k}<0.6 F_{u} A_{n v}=0.6(65)(3.91)=152.5 \mathrm{k}
$$

Therefore, use Eq. 4

$$
\begin{aligned}
\phi R_{n} & =\phi\left[0.6 F_{u} A_{n v}+F_{y} A_{g t} \mid \leq \phi\left[0.6 F_{u} A_{n v}+F_{u} A_{n t}\right]\right. \\
\phi R_{n} & =0.75[0.6(65)(3.9)+50(1.25)]=161 \mathrm{k} \longleftarrow \text { Controls } \\
& <0.75[0.6(65)(3.9)+65(1.03)]=164 \mathrm{k}
\end{aligned}
$$

- Tensile strength of angle:

(a) Yieding Criterion :

$$
\phi_{t} P_{n}=\phi_{t} F_{y} A_{g}=0.9(50)(4.72)=212.4 \mathrm{k}
$$

Block Shear

- Example 3 (cont'd
(a) Fracture Criterion :

$$
\begin{aligned}
A_{n} & =4.72-(1)\left[\frac{3}{4}+\frac{1}{8}\right]\left(\frac{1}{2}\right)=4.28 \mathrm{in}^{2}=A \\
U & =1-\frac{\bar{x}}{L}=1-\frac{0.986}{8}=0.88 \leq 0.9 \\
A_{e} & =U A=0.88(4.28)=3.77 \mathrm{in}^{2} \\
\phi_{t} P_{n} & =\phi_{t} F_{u} A_{e}=0.75(65)(3.77)=183.8 \mathrm{k}
\end{aligned}
$$

Therefore,

$$
\phi_{t} P_{n}=161 \mathrm{k}
$$

CHAPTER 3c. ANALYSIS OF TENSION MEMBERS

Block Shear

- Use of Tables in LRFD Manual

- Tables are available in Part 9 of the LRFD Manual, $2^{\text {nd }}$ Edition with which block shear strengths of W beams can be determined .
- In Table 9.3, values of $\phi F_{u} A_{n t}$ are tabulated per inch of material thickness, and then in Table 9.4 values of $\phi\left(0.6 F_{y} A_{g v}\right)$ per inch of material thickness are given.

Computer Example

■ Example 4

Using the program INSTEP32, determine the design tensile strength of a $12-\mathrm{ft}$ long W12 $\times 136$ consisting of A572 Grade 50 steel if the net area is assumed to be 35.52 in 2 and $U=0.9$.

Input:

$$
P_{u}=0 \mathrm{kips}
$$

Net Area $=35.52 \mathrm{in}^{2}$
Length $=12 \times 12=144$ in
$U=0.9$

Computer Example

Example 4 (cont'd)

Instep32--Structural Steel Clemson University Departign with AISC LRFD Procedures of Civil Engineering	
Client: Project: Topic:	Designed by: Checked by: Date:
Design of a Member in Axial Tension	
Properties for Specified Material	
$\mathrm{F}_{\mathrm{Y}}=50 \mathrm{ksi}$	
$\mathrm{F}_{\mathrm{u}}=65 \mathrm{ksi}$	
Specified Design Data	
$\mathrm{F}_{\mathrm{u}}=0 \mathrm{kips}$	
Net Area $=35.52$ sq.in.	
L $=144$ in.	
U $=0.9$	
Trial Section: W12X136	

