

The Time Value of Money (TVM)

- Money has a time value
- One dollar today is worth more than \$1 tomorrow
- Failure to pay the bills results in additional charge termed

Equivalency

- A.J. Clark School of Enginecring \cdot Department of Civil and Environmenal Enginecring
The banker normally does not care whether you pay him $\$ 1,140.00$ after one year or \$1,299.60 after two years. To him, the three values (\$1,000, $\$ 1,140$, and $\$ 1,299.60$) are equivalent.
$\$ 1,000$ today is equivalent to $\$ 1,140$ one year from today, $\$ 1,000$ today is equivalent to $\$ 1,299.60$ two years from today.

The three values are not equal but equivalent.
Note:
1.The concept of equivalence involves time and a specified rate of interest. The three preceding values are only equivalent for an interest rate of 14%, and then only at the specified times.
2. Equivalence means that one sum or series differs from another only by the accumulated interest at rate \boldsymbol{i} for \boldsymbol{n} periods of time.

Cash Flow

- A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering
- Cash flow over time: Upward arrow means positive flow, downward arrow means negative flow. There are two cash flows to each problem (borrower and lender flows).
- Net cash flow: The arithmetic sum of receipts (+) and disbursements (-) that occur at the same point in time.

- Single Payment Compound-Amount Factor (SPCAF)

$$
F=P(1+i)^{n}
$$

OR

$$
F=\left(\frac{F}{P}, i, n\right)
$$

■ Single Payment Present-Worth Factor (SPPWF)

$$
P=\frac{F}{(1+i)^{n}}
$$

OR

$$
P=\left(\frac{P}{F}, i, n\right)
$$

- A. . Clark school of Enginecring - Departmentof civil and Environmenal Enginecring

To calculate the future value F of a single payment P after n periods at an interest rate i , we make the following calculation:

At the end of the first period:
$F_{1}=P+P i$
At the end of the second period: $F_{2}=P+P i+(P+P i) i=P(1+i)^{2}$
At the end of the nth period:
$F_{n}=P(1+i)^{n}$
The future single amount of a present single amount is

$$
F=P(1+i)^{n}
$$

F is related to P by a factor which depends only on i and n. This factor, termed the single payment compound amount factor (SPCAF), makes F equivalent to P.
SPCAF may be expressed in a functional form:

$$
(1+i)^{n}=\left(\frac{F}{P}, i, n\right) \quad \text { or } F=P\left(\frac{F}{P}, i, n\right)
$$

The present single amount of a future single amount is

$$
P=\frac{F}{(1+i)^{n}} \quad \text { or } P=F\left(\frac{P}{F}, i, n\right)
$$

Note:
The factor $1 /(1+i)^{n}$ is called the present worth compound amount factor (PWCAF)

$$
\frac{1}{(1+i)^{n}}=\left(\frac{P}{F}, i, n\right)
$$

Example 1: Single Payment

- A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering

A contractor wishes to set up a revolving line of credit at the bank to handle her cash flow during the construction of a project.
She believes that she needs to borrow $\$ 12,000$ with which to set up the account, and that she can obtain the money at 1.45% per month.

If she pays back the loan and accumulated interest after 8 months, how much will she have to pay back?

$$
F=12,000(1+0.0145)^{8}=12,000(1.122061)=13,464.73=\$ 13,465
$$

The amount of interest will be:

$$
\$ 13,465-12,000=\$ 1,465 .
$$

Uniform Series of Payments

 AnalysisUniform (Equal payment) Series Compound-Amount Factor (USCAF)

OR

$$
F=A\left(\frac{(1+i)^{n}-1}{i}\right)
$$

$$
F=\left(\frac{F}{A}, i, n\right)
$$

Interest Formulas

- Uniform (Equal payment) Series Capital-Recovery Factor (USCRF)
OR $\quad A=P\left(\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right)$

$$
A=\left(\frac{A}{P}, i, n\right)
$$

Uniform Series of Payments Analysis

A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Often payments or receipts occur at regular intervals, and such uniform values can be handled by the use of additional functions.
Another symbol:
$\boldsymbol{A}=$ uniform end-of-period payments or receipts continuing for a duration of \boldsymbol{n} periods
- If a uniform amount A is invested at the end of each period for n periods at a rate of interest i per period, then the total equivalent amount F at the end of the n periods will be:

$$
F=A\left[(1+i)^{n-1}+(1+i)^{n-2}+\ldots .+(1+i)+1\right]
$$

By multiplying both sides of above equation by $(1+1)$ and subtracting from the original equation, the following expression is obtained:

$$
F i=A(1+i)^{n}-1
$$

Uniform Series of Payments
Analysis

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
Which can be rearrange to give

$$
F=A\left\lfloor\frac{(1+i)^{n}-1}{i}\right\rfloor
$$

The relationship can also be expressed in a functional form as

$$
F=A\left(\frac{F}{A}, i, n\right)
$$

$\left[(1+i)^{n}-1\right] / i$ is called the uniform series compound amount factor (USCAF) It can also be shown that

$$
A=F\left[\frac{i}{(1+i)^{n}-1}\right]
$$

Uniform Series of Payments

Analysis

Which can be rearrange to give

$$
F=A\left[\frac{(1+i)^{n}-1}{i}\right\rfloor
$$

The relationship can also be expressed in a functional form as

$$
F=A\left(\frac{F}{A}, i, n\right)
$$

$\left[(1+i)^{n}-1\right] / i$ is called the uniform series compound amount factor (USCAF) It can also be shown that

$$
A=F\left[\frac{i}{(1+i)^{n}-1}\right]
$$

$$
A=F\left(\frac{A}{F}, i, n\right)
$$

The relationship $i /\left[(1+i)^{n}-1\right]$ is termed as the uniform series sinking fund factor (USSFF)

Recall that

$$
F=P(1+i)^{n}
$$

Hence

$$
P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right] \quad \text { or } \quad P=A\left(\frac{P}{A}, i, n\right)
$$

Uniform Series of Payments Analysis

The relationship $\left[(1+i)^{n-1]}\right.$ is called the uniform series present worth factor (USPWF) $\left|i(1+i)^{n}\right|$

Also

$$
A=P\left\lfloor\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right\rfloor \quad \text { or } \quad A=P\left(\frac{A}{P}, i, n\right)
$$

The relationship \qquad is called the uniform series capital recovery factor (USCRF)

$n=8,400 / 1,400=6 \mathrm{yrs}$,
$n_{T}=2800 / 1400=2 \mathrm{yrs}$,
$n_{R}=4200 / 1400=3 \mathrm{yrs}$

