
1

Reliability-based Design of Unstiffened Panels for Ship Structures

Ibrahim A. Assakkaf and Bilal M. Ayyub

Department of Civil Engineering, University of Maryland, College Park, MD 20742, USA

Abstract

The main objective of structural design is to insure
safety, function, and performance of  an engineering
system for target reliability levels and for specified time
period.  As this must be accomplished under conditions of
uncertainty, probabilistic analyses are necessary in the
development of such probability-based design of
unstiffened panels for ship structures.  The load and
resistance factor design (LRFD) format was developed in
this paper for unstiffened panels.  Partial safety factors
were determined to account for the uncertainties in
strength and load effects.  In developing these factors,
Monte Carlo simulation was utilized to assess the
probabilistic characteristics of strength models by
generating basic random variables that define the
strength and substituting them in these models; and the
First-Order Reliability Method (FORM) was used to
determine the partial safety factors based on prescribed
probabilistic characteristics of load effects.  Also,
strength factors were computed for a set of load factors to
meet a target reliability level.

1: Introduction

In recent years, structural design has been moving
toward a more rational and probability-based design
procedure referred to as limit states design.  Such a design
procedure takes into account more information than
deterministic methods in the design of structural
components.  This information includes uncertainties in
the strength of various structural elements, in loads, and
modeling errors in analysis procedures.  Probability-based
design formats are more flexible and rational than
working stress formats because they provide consistent
levels of safety over various types of structures.  In
probability-based limit states design, probabilistic
methods are used to guide the selection of  strength
(resistance) factors and load factors which account for the
variabilities in the individual resistances and loads and

give the desired overall level of safety.  The load and
resistance factors (or called partial safety factors) are
different for each type of load and resistance.  Generally,
the higher the uncertainty associated with a load, the
higher the corresponding load factor; and the higher the
uncertainty associated with strength, the lower the
corresponding strength factor.

Designers can use the load and resistance factors in
limit-state equations to account for uncertainties that
might not be considered properly by deterministic
methods without explicitly performing probabilistic
analysis.  For this reason, design criteria should be as
simple as possible.  Moreover, they should be developed
in a form that is familiar to the users or designers and
should produce desired levels of uniformity in safety
among different types of structures without departing
drastically from existing current practice.  There is no
unique format for a design criterion.  A criterion can be
developed on a probability bases in any format.  In
general, the basic approach to develop a reliability-based
strength standard is first to determine the relative
reliability of design based on current practice.  This
relative reliability can be expressed in terms of either a
probability of failure or a safety index.  The safety index
for structural components normally varies between 2 and
6 [5].  By performing such reliability analyses for many
structures, representative values of target safety index can
be selected reflecting the average reliability of current
designs.  Based on these values and by using reliability
analysis again, it is possible to select partial safety factors
for the loads and the strength which can be used as a basis
for developing the design requirements.

For the purpose of designing code provisions, the most
common format is the use of load amplification factors
and resistance reduction factors (partial safety factors), as
represented by

φ γ 
=

R Li i

i

n

≥ ∑
1

(1)

where φ  = the resistance R reduction factor; γi = the
partial load amplification factor; and Li = the load effect.
In fact, the American Institute of Steel Construction
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(AISC) and other industries in this area have
implemented this format.  Also, a recommendation for the
use of this format is  given by the National Institute of
Standards and Technology [4].

The First-Order Reliability Method (FORM) is
commonly used to estimate the partial safety factors φ and
γi  for a specified target safety index β.  In this paper, this
method was used to determine the partial safety factors
for simply-supported plates under uniform uniaxial
compression stress.

2: First-Order Reliability Method (FORM)

The First-Order Reliability Method is a convenient tool
to assess the reliability of a structural system.  It also
provides a means for calculating the partial safety factors
φ and γi that appear in Eq. 1 for a specified target
reliability level β. The simplicity of the First-Order
Reliability Method (FORM) stems from the fact that this
method, beside the requirement that the distribution types
must be known, requires only the first and second
moments; namely the mean values and the standard
deviations of the respective random variables.  Knowledge
of the joint probability density function (PDF) of the
design basic variables is not needed as in the case of the
direct integration method for calculating the safety index
β.  Even if the joint PDF of the basic random variables is
known, the computation of β by the direct integration
method can be a very difficult task.

In design practice, there are usually two types of limit
states: the ultimate limit states and the serviceability limit
state.  Both types can be represented by the following
performance function:
g g n( ) ( , , )X = X X X1 2  ...,  (2)

in which X is a vector of basic random variables (X1, X2,
..., Xn) for the strengths and the loads.  The performance
function g(X) is sometimes called the limit state function.
It relates the random variables for the limit state of
interest.  The limit state is defined when g(X) = 0, and
therefore, failure occurs when g(X) < 0.

As indicated earlier, the basic approach to develop a
reliability-based strength standard is to determine the
relative reliability of designs based on current practice.  In
order to do that, reliability assessment of existing
structural components is needed to estimate a
representative value of the safety index β. The First-
Order-Reliability Method is very well suited to perform
such a reliability assessment.  The following are
computational steps, as outlined by Ayyub and McCuen
[2], for determining β  using FORM method:

1. Assume a design points xi
∗  and obtainxi

'∗  using the

following equation:

x
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where xi
'∗ ∗= −α βi , µ Xi

 = mean value of the basic

random variable, andσ Xi
= standard deviation of the

basic random variable.  The mean values of the basic
random variables can be used as initial values for the

design points.  The notation x∗  and x '∗  are used
respectively for the design point in the regular
coordinates and in the reduced coordinates.

2. Evaluate the equivalent normal distributions for the
non-normal basic random variables at the design point
using the following equations:

( )µ σX X Xx xN NF= −∗ − ∗Φ 1 ( ) (4a)

and
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where µ X
N =  mean of the equivalent normal 

distribution, σ X
N =  standard deviation of the 

equivalent normal distribution, FX x( )∗ =  original 

cumulative distribution function (CDF) of Xi  
evaluated at the design point, fX(x∗) = original 
probability density function (PDF) of  Xi evaluated at 
the design point, Φ(⋅) = CDF of the standard normal 
distribution, and φ(⋅) = PDF of the standard normal 
distribution.

3. Compute the directional cosines (α i
∗ , i = 1,2, ..., n) 

using the following equations:
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           for i = 1, 2, ..., n (5)
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4. With α µ σi X Xi i

∗ , ,  and N N  are now known , the 

following equation can be solved for the root β:

[ ]g X X X X X X( ), ... , ( )µ α σ β µ α σ β
1 1

0N N N N
1 n n n

  − − =∗ ∗ (7)

5. Using the β obtained from step 4, a new design point 
can be obtained from the following equation:

xi X i Xi i

∗ ∗= −µ α σ βN N  (8)
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6. Repeat steps 1 to 5 until a convergence of β is 
achieved.

The important relation between the probability of
failure and the safety index is given by
Pf = 1 - Φ(β) (9)

2.1: Partial Safety Factors (PSF)

The first-order reliability method can be used to
estimate partial safety factors such those found in the
design format of Eq. 1.  At the failure point

( R L Ln
∗ ∗ ∗, ,  ... ,  1 ), the limit state of Eq. 1 is given by

g R L Ln= − − − =∗ ∗ ∗
1 0... (10)

or, in a general form

g g x x xn( ) ( , ,..., )X = =∗ ∗ ∗
1 2 0   (11)

For a given target reliability index β, probability
distributions and statistics (means and standard
deviations) of the load effects, and coefficient of variation
of the strength, the mean value of the resistance and the
partial safety factors can be determined by the iterative
solution of Section 2, namely Eqs. 3 through 8.  The
mean value of the resistance and the design point can be
used to compute the required partial design safety factors
as

φ
µ

=
∗R

R

(12)

γ
µi

i

L

L

i

=
∗

(13)

2.2: Determination of a Strength Factor for a 
 Given Set of Load Factors

In developing design code provisions, it is sometimes
necessary to follow the current design practice to insure
consistent levels of safety over various types of structures.
Calibrations of existing design codes is needed to make
the new design formats as simple as possible and to put
them in a form that is familiar to the users or designers.
Moreover, the partial safety factors for the new codes
should provide consistent levels of safety.  For a given
safety index β and probability characteristics for the
resistance and the load effects, the partial safety factors
determined by the FORM approach might be different for
different failure modes for the same structural component.
For this reason, calibration of the calculated partial safety
factors (PSF’s) is important in order to maintain the same
values for all loads at different failure modes.  Normally,
the calibration is performed on the strength factor φ for a

given set of  load factors.  This can be accomplished by
the following algorithm:
1. For a given value of  the safety index β , probability

distributions and statistics of the load variables, and the
coefficient of variation for the strength, compute the
mean of the strength R using the first-order reliability
method as outlined in the Section 2.1.

2. With the mean value for R computed in step 1, the 
partial safety factor φ can be revised as follows:

φ
γ µ

µ
= =

∑ i L

i

n

R

i

1 (14)

where µ Li
 and µR  are the mean values of the loads 

and strength variables, respectively;  and γi, i = 1, 2,
..., n, are the given set of load factors.

3: Example: Unstiffened Panel Under 
 Uniaxial Compression

Plates are important components in ship structures, and
therefore they should be designed for a set of  failure
modes such as yielding, buckling, and fatigue of critical
connecting components.  This example consider only a
simply-supported plate with uniaxial compressive stress
of  a size a and b.  The limit state for this case is given by

g F f fu S W= − − (15)

where Fu  = the strength of the plate (stress),  fS  =
external stress due to stillwater bending, and fW   =
external stress due to wave bending.  The strength Fu is
given by one of the following two cases:
1. For a/b > 1.0
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2. For a/b < 1.0

( )Fu
f yp

Cu
B

= + − +
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where f yp= yield strength (stress) of plate, a = length 

or span of plate, b = distance between longitudinal 

stiffeners, and in which B
b

t

f

E
yp= , α = a

b
, t = 
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thickness of the plate, E = the modulus of elasticity, ν =
Poisson’s ratio, and
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The probabilistic characteristics of the strength Fu was
assessed based on the underlying basic random variables
that define Fu.  These variables are a, b, t, fyp, and E.
Monte Carlo simulation was utilized to assess the
probabilistic characteristics of the strength, Fu by
generating a, b, t, fyp , and E, and then feeding the
generated values in the strength equation to obtain Fu

values.  This process was repeated for ranges of selected
key parameters as shown in Table 1a.  Additional
information and assumptions were needed for the
probabilistic characteristics of the basic random variables.
This information and assumptions are provided in Table
1b.  Poisson’s ratio ν was assumed to be deterministic and
thus, a value of 0.3 was considered in this example.

             Table 1a. Ranges of Key Parameters
Mean Range
a /b 0.4, 0.6, 0.8, 2, 3, and 4
b /t 50, 100, and 150

t  (inch) 0.25, 0.375, and 0.5 

Table 1b. Probabilistic Characteristics of Basic 
  Random Variables
Nominal Statistical Information Bias or Error Information

Variable Value Mean COV Dist. Type Mean Std. Dev. Dist. Type
t (inch)  0 0.01563 Normal
b (inch)  0 0.125 Normal
a (inch)  0 0.125 Normal
f yp (ksi) 34000 35700 0.07 Normal 1.05   
E (ksi) 29500 29500 0.05 Normal

The above strength basic random variables were
assumed to have normal probability distributions.  The
results of the simulation were expressed in the form of
mean to nominal ratio of Fu, the coefficient of variation
(COV) of Fu, and the distribution type of Fu.  The number
of simulation cycles was set at 100 which is adequate for
all practical purposes based on the charts provided in Fig.
1 for a typical set of an estimated mean, coefficient of
variation, and the coefficient of variation of the sample
mean for Fu.  The results of the simulation of Fu are
summarized in Tables 2, and 3.  The distribution type for

Fu was determined to be either normal or lognormal.  A
lognormal probability distribution for R was used in this
study.  The strength Fu has a mean to nominal ratio of
about 1.03.  This ratio will be needed to revise the
resulting strength reduction factor by multiplying it by
1.03.  The maximum and minimum strength ratios were
found to be 1.043, and 1.006, respectively.  The
maximum and minimum coefficient of variation (COV)
of strength were found to be  0.08, and 0.04, respectively.
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Figure 1. Effect of Simulation Cycles on Sample Mean
  for F Fu un ,  COV of Fu, and COV of 

  Sample Mean for F Fu un

3.1. Calculation of Partial Safety Factors

The partial safety factors for the limit state equation
(Eq. 15) were developed using a target reliability index β
of 3.0.  This equation provides a strength minus load
effect expression of the limit state.  The First-Order
Reliability Method (FORM) as discussed in Section 2.1
requires the probabilistic characteristics of Fu, fS, and fW.
The stillwater load effect fS is due to stillwater bending
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that can be assumed to follow a normal distribution with a
coefficient of variation of 0.2.  The wave load effect fW is
due to waves that can be assumed to follow an extreme
value distribution (Type I, largest) with a coefficient of
variation of 0.1.  The mean values of stillwater and waves
are considered in the study in the form of a ratio of
wave/stillwater loads that ranges from 1.5 to 1.7.

Table 2. Mean to Nominal Strength Ratio( )F Fu un

using 100 Simulation Cycles
  b/t  

a/b t (in) 50 100 150
 0.250 1.0329002 1.018011 1.0243729
2 0.375 1.0384686 1.0232304 1.0267309
 0.500 1.0415835 1.0297619 1.0278817
 0.250 1.0322676 1.0249275 1.0217597
3 0.375 1.0401574 1.0250572 1.0098963
 0.500 1.0412124 1.0211235 1.0274101
 0.250 1.0431215 1.0061456 1.0300229
4 0.375 1.0359757 1.0296331 1.020356
 0.500 1.0317967 1.0351399 1.0212485
 0.250 1.0316134 1.0367885 1.0379335

0.4 0.375 1.0286892 1.0322983 1.0271185
 0.500 1.037029 1.0313444 1.031872
 0.250 1.0292437 1.0245135 1.0282429

0.6 0.375 1.0317401 1.0328774 1.0324076
 0.500 1.0404428 1.0317212 1.0346454
 0.250 1.0232164 1.0128006 1.0191385

0.8 0.375 1.0402862 1.0119037 1.0141044
 0.500 1.0397768 1.0348356 1.0209614

Table 3.  Coefficient of Variation of Strength (Fu) 
  using 100 Simulation Cycles

  b/t  
a/b t (in) 50 100 150

 0.250 0.0584253 0.0790815 0.0694034
2 0.375 0.0607941 0.0510484 0.0572355
 0.500 0.0527346 0.0475373 0.0553382
 0.250 0.0576359 0.0793697 0.0693333
3 0.375 0.0542866 0.0533326 0.0585843
 0.500 0.0489141 0.0546104 0.0511533
 0.250 0.0668116 0.0763437 0.0707261
4 0.375 0.0600205 0.0479042 0.0595471
 0.500 0.0556326 0.0506372 0.0549195
 0.250 0.0705274 0.0744475 0.0706838

0.4 0.375 0.0572604 0.0588016 0.053054
 0.500 0.0523423 0.053527 0.0561629
 0.250 0.0574048 0.050443 0.0485009

0.6 0.375 0.0552815 0.0557277 0.0617511
 0.500 0.054886 0.0576134 0.0467804
 0.250 0.0621478 0.0701532 0.0717148

0.8 0.375 0.0597223 0.0517489 0.058896
 0.500 0.0526932 0.0462986 0.0591769

The simulation results of Fu were used to develop the
partial safety factors based on the limit state equation.
The partial safety factors were computed for several
selected cases that cover the assumed ranges of the
parameters a, b, t, fyp and E.  The ratios of means for
strength/stillwater load and the partial safety factors for a

target reliability of 3.0 are summarized in Tables 4 and 5,
respectively, and in Fig. 2.  Based on these results, the
following preliminary values for partial safety factors are
recommended:
Strength reduction factor (φ) = 0.85(1.03) = 0.88
Stillwater load factor (γS)    = 1.3
Wave load factor (γW)            =  1.25

Table 4. Ratios of Means for Strength/Stillwater Load
Ratios of Means for Wave/Stillwater Load

COV(F u ) 1.5 1.6 1.7
0.04 3.43035 3.5695 3.70977
0.08 3.6375 3.7817 3.9271

Table 5. Partial Safety Factors (for COV(Fu) of 0.04 
and 0.08, respectively)

Ratios of Means for Wave/Stillwater Load
Partial Safety Factors 1.5 1.6 1.7

Strenght Reduction Factor (φ ) 0.960338 0.961079 0.961747
0.863684 0.86526 0.86679

Stillwater Load Factor (γS) 1.301221 1.283616 1.267817
1.28566 1.270806 1.257081

Wave Load Factor (γw) 1.328696 1.341832 1.352955
1.237262 1.250783 1.262827

a. Strength Reduction Factor for In-Plane Compression
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c. Wave Load Factor for In-Plane Compression
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Figure 2. Partial Safety Factors for Plates Under 
 Uniaxial Compression.
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3.2: Calculation of Strength Factor For a Given 
  Set of Load Factors

As indicated in Section 2.2 , for a given β and
probabilistic characteristics for the strength and the load
effects, the partial safety factors determined by the FORM
approach  might be different for different failure modes.
For this reason calibration is often needed on the strength
factor φ to maintain the same values for all load factors
γ ,s.  The following numerical example illustrates the
procedure of Section 2.2 for revising the strength factor
for a given set of load factors.  For instance, given γS =
1.3, γW = 1.2, and  the probabilistic characteristics of the
random variables as shown Table 6, the corresponding
strength factor φ was calculated for a target reliability
level β = 3.0.  Using FORM as outlined in Section 2.2,
the mean of Fu was found to be 3.66.  With the mean
value known , Eq. 14 gives

φ
γ µ γ µ

µ
=

+
= +S S W W

Fu

(1.03) (1.03) = 0.91
13 1 12 16

366

. ( ) . ( . )

.

Since the strength Fu has a mean to nominal ratio of 1.03,
this ratio was needed to revise φ  by multiplying it by
1.03.

Table 6. Probabilistic Characteristics of Random    
Variables

Random Variable Mean COV Distribution Type
F u not provided 0.06 Lognormal
L S 1 0.2 Normal

L W 1.6 0.1 Type I (Largest)

4: Summary and Conclusions

The First-Order Reliability Method (FORM) can be
used to assess the reliability of a structural systems as well
as to develop and establish partial safety factors.  In this
study, the FORM method was used to develop partial
safety factors for a simply-supported plate (unstiffend
panel) under uniaxial compressive stress.  The strength
model for the plate Fu for this case was established.  Then
Monte Carlo simulation was utilized to assess the
probabilistic characteristics of the strength Fu by
generating the basic random variables that define the
strength  and then feeding the generated values in the
strength model for the plate to obtain Fu values.  The
distribution type of Fu was determined to be lognormal.
The maximum and minimum COV values of  Fu were
found to be 0.08 and 0.04, respectively. The  prescribed

probabilistic characteristics of the load effects and the
simulation results of the strength were used to develop the
partial safety factors based on a linear limit state.  The
partial safety factors were computed for several selected
cases that cover the assumed ranges of key parameters
that define the strength Fu.  Based on these results and for
a target reliability level β of  3.0, the following values for
partial safety factors were selected:

Strength reduction factor φ = 0.88
Stillwater load factor γS      = 1.30
Wave load factor γW            = 1.25

The resulting partial safety factors can be used to design
plates under uniaxial compressive stresses to meet a
strength limit state given by the following design format:
φ γ γF f fu S S W W≤ +  (19a)

or
088 13 125. . .F f fu S W≤ +  (19b)
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