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- Beams

m Introduction

— The most common type of structural
member is a beam.

— In actual structures beams can be found in
an infinite variety of
» Sizes
» Shapes, and
* Orientations
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m [ntroduction
Definition

A beam may be defined as a member whose
length is relatively large in comparison with
its thickness and depth, and which is loaded
with transverse loads that produce significant
bending effects as oppose to twisting or axial

effects
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=~ Beams

m Introduction
Figure 2
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= Beams
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m Introduction

— Beams can be
« Straight as shown in Figure 1c
— For example the straight member bde

» Curved as shown in Figure 1c
— For example the curved member abc
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=  Beams

[ —,

m [ntroduction
— Beams are generally classified according
to their geometry and the manner in which
they are supported.
— Geometrical classification includes such
features as the shape of the cross section,
whether the beam is

* straight or

e curved
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m Introduction
— Or whether the beam is

» Tapered, or
* Has a constant cross section.

— And some other features that will be
discussed later
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= Beams

—,

m [ntroduction

— Beams can also be classified according to
the manner in which they are supported.
Some types that occur in ordinary practice
are shown in Figure 3, the names of some
of these being fairly obvious from direct
observation.

— Note that the beams in (d), (e), and (f) are
statically indeterminate.
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=" Beams

m Introduction

Figure 3

(a) Cantilever

(b) Simply supported

(d) continuous

(c) Overhanging

(¢) Fixed ended (f) Cantilever, simply supported
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80 1b 50 1b
I 12 in. | 26 in. | 12in. I
C .'J|
A B
R =801b R, = 80 1b
(a)

— )

=9601b - in. M'=9601Ib-in.

(h)

IG“I Pure Bending: Prismatic members

subjected to equal and opposite couples
acting in the same longitudinal plane
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» Eccentric Loading: Axial loading which
does not pass through section centroid
7s01h - in produces internal forces equivalent to an

axial force and a couple

P =1301h

* Transverse Loading: Concentrated or
distributed transverse load produces
internal forces equivalent to a shear
force and a couple

* Principle of Superposition: The normal
stress due to pure bending may be
combined with the normal stress due to
axial loading and shear stress due to
shear loading to find the complete state
of stress.
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_Svmmetnc Member in Pure Bending

+ Internal forces in any cross section are equivalent
to a couple. The moment of the couple is the
section bending moment.

 From statics, a couple M consists of two equal
and opposite forces.

* The sum of the components of the forces in any
direction is zero.

* The moment is the same about any axis
perpendicular to the plane of the couple and
zero about any axis contained in the plane.

* These requirements may be applied to the sums
of the components and moments of the statically
indeterminate elementary internal forces.

F,=[c,dA=0
M, =[zo, dd=0
=[-yo,dA=M
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m Normal Stress o in beams

The normal stress on plane a-a is related
to the resisting moment M, as follows (see
Figure 4):

- -—LreayO' dA o
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m Stresses in beams

Figure 4
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s Normal and Shearlng Stress

m Shearing Stress rin beams

The shearing stress on plane a-a is related
to the resisting shear V as follows (see
Figure 4):

b ladd 2)

arca
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m Deformation of Beam due to Lateral

Loading
Figure 5
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s Flexural Strains

m Deformation of Beam due to
Lateral Loading

c

Figure 6

C
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+~ Bending Deformations

Beam with a plane of symmetry in pure
bending:

member remains symmetric
bends uniformly to form a circular arc

cross-sectional plane passes through arc center
and remains planar

length of top decreases and length of bottom

(a) Longitudinal, vertical section increases
(plane of symmetry)
* a neutral surface must exist that is parallel to the
M’ .
i upper and lower surfaces and for which the length
T~

does not change

stresses and strains are negative (compressive)
above the neutral plane and positive (tension)
below it

(h) Longitudinal, horizontal section

= Un
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“"Strain Due to Bending

Consider a beam segment of length L.

After deformation, the length of the neutral
surface remains L. At other sections,

L'=(p-y)
§=L-L'=(p-y)-p0=-y0
&y = 9 = ¥ _y (strain varies linearly)
L Yol P
c c
Ep=— O p=—o
P Em
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m Deformation of Beam due to Lateral
Loading

— A segment of the beam of Fig. 4 between
planes a-a and b-b is shown in Figure 7
with the deformation (distortion) is greatly
exaggerated

— Assumption is made that a plane section
before bending remains plane after
bending.
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m Deformation of Beam due to Lateral
Loading
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m Stresses in beams
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i~ Flexural Strains

m Experimental Results

— Precise experimental measures suggest that at
some distance c (see Figure 7) above the bottom
of the beam, longitudinal elements undergo no
change in length.

— The curved surface formed by these elements (at
radius p) is referred to as the neutral surface of the
beam, and the intersection of this surface with any
cross section is called the neutral axis of the
section.
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m Experimental Results

— All elements (fibers) on one side of the
neutral surface are compressed and those
on the opposite side are elongated.

— In reference to Fig. 8, the fibers above the
neutral surface of the beam are
compressed, while those below the neutral
axis are elongated.
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m Longitudinal Strain

— The longitudinal strain &, experienced by a
longitudinal element that is located a
distance y from the neutral axis (surface) of
the beam is determined as follows:

AL L, -1
gx = = -
L L

A

3)

L,= final length after loading
L,;= initial length before loading
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F lexural Strains

m Longitudinal Strain

— From the geometry of the beam as shown
in Figure 7 and 8:
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i~ Flexural Stalns

m Longitudinal Strain

AX'—Ax  (p—y)AG— pAO

gx = =
Ax PAO
_PAO—yAO—-pAO  —yAO
PAG PAO
1
E==—Y ()
P
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i~ Flexural Strains

h_________________________________________ N
m Longitudinal Strain

The normal longitudinal strain ¢, varies
linearly, through the member, with the
distance y from the neutral surface, and it
is given by
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i~ Flexural Stress
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m For special case of linearly elastic
deformation, the relationship between
the normal stress o, and the normal
strain ¢, is given by Hooke’s law as

E=Z:= slope (7) o,
g

=% = slope
gx

X
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i~ Flexural Stress

m Flexural Normal Stress
— EqQ. 7 can be rewritten as

o, =¢F (8)

— Recall Eq. (6) ¢, =—% , therefore

o =¢E=—=F 9)
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m Flexural Normal Stress

Distribution of Normal Stress in a Beam Cross
Section

. Figure 9
Y : P
: " 1 Centroidal axis
_ _ _' Neutral axis
S pk [ e
________________________ o\ yIC
P Yy dAf——=dy
.i r \
I
R 1 Vr
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F lexural Stress

m Flexural Normal Stress

— The resisting moment M, that can be
develop by the normal stress in a typical
beam with loading in a plane of symmetry
but arbitrary cross section (Fig. 9) is given
by Eq. 1 as

M = —Lrea yo. dA
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Flexural Stress

m Flexural Normal Stress

— Since y is measured from the neutral axis
(surface), it is necessary to locate this axis
by means of the equilibrium equation as

follows:
> F =0
j odA=0 (10)
A X
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Flexural Stress

m Flexural Normal Stress
— Substituting for o, given by Eq. 9 into Eq.

10, yields
[ odd=[ 2 Eda
g (11)
E
=——[ ydA=0
o
— But

= L ydA = distance from neutral axis

(12)

to centroidal axis (c-¢)
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Flexural Stress

m Flexural Normal Stress
— Therefore, Eq. 11 becomes

E
[odi=—=y.4=0 (12)
Yo
— Since neither (E/p) nor A are zero, y, must
equal zero.
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Flexural Stress

m Flexural Normal Stress

For flexural loading and linearly

elastic action, the neutral axis passes
through the centroid of the cross section
of the beam
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Flexural Stress o

m Flexural Normal Stress
— The maximum normal stress on the cross
section is given by

R 13
= (13)

— Combining Egs. 9 and 13, hence

Y Y
o.==0, =—0, (14)

C C
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Flexural Stress

m Flexural Normal Stress
— Substituting Eq. 14 into Eq. 1, gives

:—j yo, dA

area

Z—fAy(;chdA =

— The integrgly’d4 is called the second
moment of area, and it is given the

symbol 1.

%[ yda  (15)
C
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ki Flexural Stress

m Flexural Normal Stress

— Substituting for the second moment of area
I of the cross section of the beam into Eq.

15, yields
o o
M =-2<[ y*da=-"<1  (16)
c c
or
M
GC = - C:O-max (17)
I
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i Elastic Flexural Formula

N
m The elastic flexural formula for normal

stress is given by
_Mc

(18)

O-max T
I
and

M
. (19)
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i Elastic Flexural Formula
N
m An alternative form of the flexural
formula for maximum normal stress is
given by
Alr
max e (20)
Where
I
S=——
C
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- Stress Due to Bending

* For a linearly elastic material,

oy=FE¢, = —%Eem

=-2 o, (stress varies linearly)
c

For static equilibrium, . .
* For static equilibrium,

Yy
FXZOZIdeA:J_;O'mdA M=I_y5 dA:J_y(_ZJ )dA
X m
c

O,
0=—""|ydA
c '[ M=m J‘ y2 dA = Il
Cc c
First moment with respect to neutral Me M
plane is zero. Therefore, the neutral Om =TT
surface must pass through the
section centroid. Substituting o, =-2o,,
c
My

o=
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g  Deformation in a Symmetric
Member in Pure Bending
d + Deformation due to bending moment M is
quantified by the curvature of the neutral surface
/ 1

r.f' p—
p c

_M

EI

* Although cross sectional planes remain planar
when subjected to bending moments, in-plane

deformations are nonzero,

_Em _Om _ 1 Mc

Ec Ec I

Neutral /
fooe / 4

surface /
\ /

Neutral .m_n.si : Ey =-VE, = Q £, =—VE, = Q
transverse section 1

» Expansion above the neutral surface and
contraction below it cause an in-plane curvature,

v . .
— =anticlastic curvature
Yol

SRS
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s Example 1

SOLUTION:

» Based on the cross section geometry,
calculate the location of the section
centroid and moment of inertia.

p=Z g oy(i+aa?)
>A

» Apply the elastic flexural formula to

f—— 90 mm — —-|

1
| 20 mm

+
40 mm
)

.:30 mm

A cast-iron machine part is acted upon
by a 3 kN-m couple. Knowing E = 165
GPa and neglecting the effects of
fillets, determine (a) the maximum
tensile and compressive stresses, (b)
the radius of curvature.

find the maximum tensile and
compressive stresses.

_ Mc

A

Om

¢ Calculate the curvature
1M
p EI
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Examgle 1 gcont’dg

SOLUTION:
|-— 90 mm —-—-—I
E. ‘k j:’.ﬂmm Based on the cross section geometry, calculate

the location of the section centroid and
moment of inertia.

T

ify = 50 mm T

] 40 mm i

=l

o= Etll/mm Ir'— Area, mm? y, mm V4, mm?>
i 1| 20x90 =1800 50 90x10°

2 | 4030 =1200 20 24x10°

> 4=3000 >34 =114x10

12 mm’

7o ZyA _114x10°

= = =38 mm
>4 3000

18 mm

1y =31+ 4d?)= 5 (L 68> + 4a?)
= %90x203 +1800x122 )+ %30x403 +1200x18?)

7 =868x10>mm=868x10""m*
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i Examgle 1 Scont’dg

* Apply the elastic flexural formula to find the

“Fo,=0022m  Maximum tensile and compressive stresses.
q= x Mc
cg = 0.038 m Oy = T

P B
g o4 = MCA _ 3kN-mx0.022m oy = +76.0 MPa

I 868x10~ mm*

op =_MICB _ _3kN-mx0.038m o5 =—131.3MPa

868x10~ mm*

/— Center of curvature

 Calculate the curvature
1_M
p EI

3kN-m

L 2095%107m’!
(165GPa)g68x10°m*) |
Yol

=47.7m
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Unsymmetrical Bending

* Analysis of pure bending has been limited
to members subjected to bending couples
acting in a plane of symmetry.

- UR,

* Members remain symmetric and bend in
the plane of symmetry.

¢ The neutral axis of the cross section
coincides with the axis of the couple

-« Will now consider situations in which the
bending couples do not act in a plane of
symmetry.

 Cannot assume that the member will bend
Noa in the plane of the couples.
= ""'f =
o = * In general, the neutral axis of the section will
not coincide with the axis of the couple.
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Unszmmetrical Bending

« 0=F, =[o.dd= j(—lam)dA
C

or 0=[ydA

neutral axis passes through centroid

. . .. _ _ Y
Wish to determine the conditions under * M =M:=-] y(‘;“ m )dA
which the neutral axis of a cross section o1
of arbitrary shape coincides with the or M === [ =1, =moment of inertia

C
axis of the couple as shown. defines stress distribution

» The resultant force and moment

from the distributic?n of . « 0=M,=]z0.dA= IZ(—XUmjdA
elementary forces in the section ¢

must satisfy or 0=[yzdAd= 1, = product of inertia
F,=0=M, M, =M =appliedcouple couple vector must be directed along

a principal centroidal axis
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Unszmmetrical Bending

Superposition is applied to determine stresses in
the most general case of unsymmetric bending.

)
LT

* Resolve the couple vector into components along
the principle centroidal axes.
M, =M cos@ M, =Msind

* Superpose the component stress distributions

o o My Myy
* L,

My My
o, =0=-"22 T
1, Iy
1
tang = Y=z tang
z 1 v
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Unszmmetrical Bending

m The form of the flexural formula for
normal stress in unsymmetrical bending
is given by

M M
Gx - Zy+ yy
I 1

Z 02

(21)
Where

M_, I. = moment and moment of inertia about z-axis
M,, I, = moment and moment of inertia about z-axis
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Example 2

s Un

Tty o

SOLUTION:

1600 1b - in. .
* Resolve the couple vector into

components along the principle
centroidal axes and calculate the
corresponding maximum stresses.

M, =M cos8 M, =Msin0

/ l — * Combine the stresses from the
component stress distributions.
1.5 in. o‘x:—Mva
A 1600 Ib-in couple is applied to a I, I
rectangular wooden beam in a plane + Determine the angle of the neutral
forming an angle of 30 deg. with the axis
vertical. Determine (a) the maximum ) v
stress in the beam, (b) the angle that the =~ tand="—="=tand
neutral axis forms with the horizontal g
plane.
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Example 2 (cont’d)

' * Resolve the couple vector into components and calculate

D : the corresponding maximum stresses.
- M, =(16001b-in)cos30 = 13861b-in
L g Al M, = (16001b-in)sin 30 = 8001b-in
g %) G
J 1 . -\ .4
g=aip ”L i I, = E(l.Sm)(&Sm) =5.359in
- I, =L (3.5in)1.5in)’ = 0.9844in*

.“'::— The largest tensile stress due to M , occurs along AB
o o My (13861b-in)(1.75in)
| = 2r 2 AT

=452.6psi
I 5.359in*
My M.,y The largest tensile stress due to M , occurs along AD
o =— z + J
* M,z i i
1. I, oy = 7 (8001b IHXO.ZSIH) — 609.5 psi
Iy 0.9844in

» The largest tensile stress due to the combined loading
occurs at 4.

Omax = 0] +0, =452.6+609.5 Omax = 1062 psi




