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Beams

Introduction
– The most common type of structural 

member is a beam.
– In actual structures beams can be found in 

an infinite variety of
• Sizes
• Shapes, and
• Orientations
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Beams

Introduction
Definition

A beam may be defined as a member whose
length is relatively large in comparison with
its thickness and depth, and which is loaded
with transverse loads that produce significant
bending effects as oppose to twisting or axial
effects
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Beams

Introduction

Beam

Figure 1
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Beams

Introduction
Figure 2
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Beams

Introduction
– Beams can be

• Straight as shown in Figure 1c
– For example the straight member bde

• Curved as shown in Figure 1c
– For example the curved member abc
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Beams

Introduction
– Beams are generally classified according 

to their geometry and the manner in which 
they are supported.

– Geometrical classification includes such 
features as the shape of the cross section, 
whether the beam is

• straight or 
• curved
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Beams

Introduction
– Or whether the beam is

• Tapered, or
• Has a constant cross section.

– And some other features that will be 
discussed later
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Beams

Introduction
– Beams can also be classified according to 

the manner in which they are supported.  
Some types that occur in ordinary practice 
are shown in Figure 3, the names of some 
of these being fairly obvious from direct 
observation.

– Note that the beams in (d), (e), and (f) are 
statically indeterminate.

LECTURE 9. BEAMS: BENDING STRESS (4.1 – 4.5, 4.13) Slide No. 9
ENES 220 ©Assakkaf

Beams

Introduction

(a) Cantilever

(c) Overhanging

(e) Fixed ended

(b) Simply supported

(d) continuous

(f) Cantilever, simply supported

Figure 3
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Pure Bending

Pure Bending:  Prismatic members 
subjected to equal and opposite couples 
acting in the same longitudinal plane
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Other Loading Types

• Principle of Superposition:  The normal 
stress due to pure bending may be 
combined with the normal stress due to 
axial loading and shear stress due to 
shear loading to find the complete state 
of stress.

• Eccentric Loading:  Axial loading which 
does not pass through section centroid 
produces internal forces equivalent to an 
axial force and a couple

• Transverse Loading:  Concentrated or 
distributed transverse load produces 
internal forces equivalent to a shear 
force and a couple
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• These requirements may be applied to the sums 
of the components and moments of the statically 
indeterminate elementary internal forces.

• Internal forces in any cross section are equivalent 
to a couple.  The moment of the couple is the 
section bending moment.

• From statics, a couple M consists of two equal 
and opposite forces.

• The sum of the components of the forces in any 
direction is zero.

• The moment is the same about any axis 
perpendicular to the plane of the couple and 
zero about any axis contained in the plane.
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Normal and Shearing Stress

Normal Stress σ in beams
The normal stress on plane a-a is related 
to the resisting moment Mr as follows (see 
Figure 4):

∫−= area
 dAyM r σ (1)
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Normal and Shearing Stress

Stresses in beams
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Shearing Stress τ in beams
The shearing stress on plane a-a is related 
to the resisting shear V as follows (see 
Figure 4):

∫−= area
 dAVr τ (2)

Normal and Shearing Stress
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Flexural Strains

Deformation of Beam due to Lateral 
Loading

w
P

Figure 5

LECTURE 9. BEAMS: BENDING STRESS (4.1 – 4.5, 4.13) Slide No. 17
ENES 220 ©Assakkaf

Deformation of Beam due to 
Lateral Loading

Figure 6

c

Flexural Strains
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Beam with a plane of symmetry in pure 
bending:

• member remains symmetric

• bends uniformly to form a circular arc

• cross-sectional plane passes through arc center
and remains planar

• length of top decreases and length of bottom 
increases

• a neutral surface must exist that is parallel to the 
upper and lower surfaces and for which the length 
does not change

• stresses and strains are negative (compressive) 
above the neutral plane and positive (tension) 
below it
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Consider a beam segment of length L.

After deformation, the length of the neutral 
surface remains L.  At other sections,
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Flexural Strains

Deformation of Beam due to Lateral 
Loading
– A segment of the beam of Fig. 4 between 

planes a-a and b-b is shown in Figure 7 
with the deformation (distortion) is greatly 
exaggerated

– Assumption is made that a plane section 
before bending remains plane after 
bending.
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Flexural Strains

Deformation of Beam due to Lateral 
Loading
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Stresses in beams
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Flexural Strains
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Flexural Strains

Experimental Results
– Precise experimental measures suggest that at 

some distance c (see Figure 7) above the bottom 
of the beam, longitudinal elements undergo no 
change in length.

– The curved surface formed by these elements (at 
radius ρ) is referred to as the neutral surface of the 
beam, and the intersection of this surface with any 
cross section is called the neutral axis of the 
section.
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Flexural Strains

Experimental Results
– All elements (fibers) on one side of the 

neutral surface are compressed and those 
on the opposite side are elongated.

– In reference to Fig. 8, the fibers above the 
neutral surface of the beam are 
compressed, while those below the neutral 
axis are elongated.
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Flexural Strains

Experimental Results
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Flexural Strains

Longitudinal Strain
– The longitudinal strain εx experienced by a 

longitudinal element that is located a 
distance y from the neutral axis (surface) of 
the beam is determined as follows:

f

if
x L

LL
L
L −
=

∆
=ε

Lf = final length after loading
Li = initial length before loading

(3)
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Flexural Strains

Longitudinal Strain
– From the geometry of the beam as shown 

in Figure 7 and 8:
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Flexural Strains

Longitudinal Strain
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Flexural Strains

Longitudinal Strain
The normal longitudinal strain εx varies 
linearly, through the member, with the 
distance y from the neutral surface, and it 
is given by

ρ
ε y

x −= (6)
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Flexural Stress

For special case of linearly elastic 
deformation, the relationship between 
the normal stress σx and the normal 
strain εx is given by Hooke’s law as

slope==
x

xE
ε
σ

σx

εx

slope ==
x

xE
ε
σ(7)
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Flexural Stress

Flexural Normal Stress
– Eq. 7 can be rewritten as

– Recall Eq. (6)                  , therefore 

Exx εσ = (8)

ρ
ε y

x −=

EyExx ρ
εσ −== (9)
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Flexural Stress

Flexural Normal Stress
Distribution of Normal Stress in a Beam Cross 
Section
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Flexural Stress

Flexural Normal Stress
– The resisting moment Mr that can be 

develop by the normal stress in a typical 
beam with loading in a plane of symmetry 
but arbitrary cross section (Fig. 9) is given 
by Eq. 1 as

∫−= area
 dAyM xr σ
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Flexural Stress

Flexural Normal Stress
– Since y is measured from the neutral axis 

(surface), it is necessary to locate this axis 
by means of the equilibrium equation as 
follows:

0

0

=

=

∫
∑

dA

F

A x

x

σ (10)
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Flexural Stress

Flexural Normal Stress
– Substituting for σx given by Eq. 9 into Eq. 

10, yields

– But  

0           =−=

−=

∫

∫∫

A

AA x

ydAE

EdAydA

ρ

ρ
σ

)( axis centroidal to                    

axis neutral from distance 

c-c

ydAy
AC == ∫

(11)

(12)
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Flexural Stress

Flexural Normal Stress
– Therefore, Eq. 11 becomes

– Since neither (E/ρ) nor A are zero, yC must 
equal zero.

0=−=∫ AyEdA CA x ρ
σ (12)
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Flexural Stress

Flexural Normal Stress

For flexural loading and linearly
elastic action, the neutral axis passes 
through the centroid of the cross section
of the beam



20

LECTURE 9. BEAMS: BENDING STRESS (4.1 – 4.5, 4.13) Slide No. 38
ENES 220 ©Assakkaf

Flexural Stress

Flexural Normal Stress
– The maximum normal stress on the cross 

section is given by

– Combining Eqs. 9 and 13, hence 

cE
ρ

σ −=max (13)

cx c
y

c
y σσσ == max (14)

LECTURE 9. BEAMS: BENDING STRESS (4.1 – 4.5, 4.13) Slide No. 39
ENES 220 ©Assakkaf

Flexural Stress

Flexural Normal Stress
– Substituting Eq. 14 into Eq. 1, gives

– The integral           is called the second 
moment of area, and it is given the 
symbol I.
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Flexural Stress

Flexural Normal Stress
– Substituting for the second moment of area 

I of the cross section of the beam into Eq. 
15, yields

maxc

2
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Elastic Flexural Formula

The elastic flexural formula for normal 
stress is given by

I
yM

I
cM

r
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r

=
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σ

σ
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       max (18)
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Elastic Flexural Formula

An alternative form of the flexural 
formula for maximum normal stress is 
given by

Where 
S

M r=max       σ (20)

c
IS =
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• For a linearly elastic material,
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Deformation in a Symmetric 
Member in Pure Bending

• Deformation due to bending moment M is 
quantified by the curvature of the neutral surface

EI
M

I
Mc

EcEcc
mm

=

===
11 σε

ρ

• Although cross sectional planes remain planar 
when subjected to bending moments, in-plane 
deformations are nonzero,

ρ
ννεε

ρ
ννεε yy

xzxy =−==−=

• Expansion above the neutral surface and 
contraction below it cause an in-plane curvature,

curvature canticlasti 1
==

′ ρ
ν

ρ
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Example 1

A cast-iron machine part is acted upon 
by a 3 kN-m couple.  Knowing E = 165 
GPa and neglecting the effects of 
fillets, determine (a) the maximum 
tensile and compressive stresses, (b) 
the radius of curvature.

SOLUTION:

• Based on the cross section geometry, 
calculate the location of the section 
centroid and moment of inertia.

( )∑ +=
∑
∑= ′

2dAII
A
AyY x

• Apply the elastic flexural formula to 
find the maximum tensile and 
compressive stresses.

I
Mc

m =σ

• Calculate the curvature

EI
M

=
ρ
1
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Example 1 (cont’d)
SOLUTION:

Based on the cross section geometry, calculate 
the location of the section centroid and 
moment of inertia.
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Example 1 (cont’d)
• Apply the elastic flexural formula to find the 

maximum tensile and compressive stresses.

49

49

mm10868
m038.0mkN 3

mm10868
m022.0mkN 3

−

−

×

×⋅
−=−=

×

×⋅
==

=

I
cM

I
cM

I
Mc

B
B

A
A

m

σ

σ

σ

MPa 0.76+=Aσ
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• Calculate the curvature
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Unsymmetrical Bending
• Analysis of pure bending has been limited 

to members subjected to bending couples 
acting in a plane of symmetry.

• Will now consider situations in which the 
bending couples do not act in a plane of 
symmetry.

• In general, the neutral axis of the section will 
not coincide with the axis of the couple.

• Cannot assume that the member will bend 
in the plane of the couples.

• The neutral axis of the cross section 
coincides with the axis of the couple

• Members remain symmetric and bend in 
the plane of symmetry.
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Unsymmetrical Bending

Wish to determine the conditions under 
which the neutral axis of a cross section 
of arbitrary shape coincides with the 
axis of the couple as shown.

•

couple vector must be directed along 
a principal centroidal axis
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from the distribution of 
elementary forces in the section 
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Unsymmetrical Bending
Superposition is applied to determine stresses in 
the most general case of unsymmetric bending.

• Resolve the couple vector into components along 
the principle centroidal axes.

θθ sincos MMMM yz ==

• Superpose the component stress distributions

y

y

z

z
x I

yM
I

yM
+−=σ

• Along the neutral axis,
( ) ( )
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Unsymmetrical Bending

The form of the flexural formula for 
normal stress in unsymmetrical bending 
is given by

Where 

(21)
y

y

z

z
x I

yM
I

yM
+−=σ

Mz, Iz = moment and moment of inertia about z-axis
My, Iy = moment and moment of inertia about z-axis



27

LECTURE 9. BEAMS: BENDING STRESS (4.1 – 4.5, 4.13) Slide No. 52
ENES 220 ©Assakkaf

Example 2

A 1600 lb-in couple is applied to a 
rectangular wooden beam in a plane 
forming an angle of 30 deg. with the 
vertical.  Determine (a) the maximum 
stress in the beam, (b) the angle that the 
neutral axis forms with the horizontal 
plane.

SOLUTION:

• Resolve the couple vector into 
components along the principle 
centroidal axes and calculate the 
corresponding maximum stresses.

θθ sincos MMMM yz ==

• Combine the stresses from the 
component stress distributions.

y

y

z

z
x I

yM
I

yM
+−=σ

• Determine the angle of the neutral 
axis.

θφ tantan
y

z
I
I

z
y
==
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Example 2 (cont’d)
• Resolve the couple vector into components and calculate 

the corresponding maximum stresses.

( )
( )

( )( )
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• The largest tensile stress due to the combined loading 
occurs at A.

5.6096.45221max +=+= σσσ psi1062max =σ

y

y

z

z
x I

yM
I

yM
+−=σ


