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Power Transmission

Work of a Force
– A force does work only when the particle 

to which the force is applied moves.

d

P

(1)PdU ==Work
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Power Transmission

Work in Two and Three Dimension

d

P

φ
P cos φ

U = P· d = (P cos φ) d
= Px dx + Py dy

(2)
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Power Transmission

Work of a Couple
– The work of a couple is defined as the 

magnitude of the couple C times the 
angular movement of the body.

θ∆=→ CU 21

θ
rr

dCdU ⋅=
(3)
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Power Transmission

Power Transmission by Torsional Shaft
The power is defined as the time rate of 
doing work, that is

ω

θθ

T
dt
dT

t
dC

dt
dU

=

=⋅=

       

ω = angular velocity of the shaft in radians per minute

(4)

LECTURE 8. SHAFTS: POWER, STRESS CONCENTRATION, THIN-WALLED (3.7 – 3.8, 3.13) Slide No. 5
ENES 220 ©Assakkaf

Power Transmission

Power Transmission by Torsional Shaft
– But ω = 2π f, where f = frequency.  The unit 

of frequency is 1/s and is called hertz (Hz).
– If this is the case, then the power is given 

by

f
PT

fTP

π

π

2

or
2

=

=

(5)
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Power Transmission

Power Transmission by Torsional Shaft
– Units of Power

hp (33,000 ft·lb/min)watt (1 N·m/s)

US CustomarySI
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Power Transmission

Power Transmission by Torsional Shaft
– Some useful relations

lb/sin 6600lb/sft 550hp 1

Hz
60
1

60
1 rpm 1 1

⋅=⋅=

== −s

rpm = revolution per minute
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Power Transmission

Example 5
What size of shaft should be used for a 
rotor of 5-hp motor operating at 3600 rpm if 
the shearing stress is not to exceed 8500 
psi in the shaft?

P  hp 5
in 6600  hp 1

=
=

lb/sin 000,33)6600(5 ⋅==P
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Power Transmission

Example 5 (cont’d)

Let J denotes the polar moment of area, and c
the maximum radius, therefore,

( )

( ) inlb 54.87
602
000,33

2

60/s Hz 60
rpm 60
Hz 1rpm 3600

⋅===

===

ππf
PT

f

τ
τ T

c
J

J
Tc

=⇒= (6)
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Power Transmission

Example 5 (cont’d)
– Evaluating the term J/c in Eq. 6, yields

– Therefore,

32

4

2
12

1

c
c

c

c
J π

π
==

in 375.02  (dia) sizeShaft in 1872.0

in 001030.0
8500

54.87
2
1 332

==⇒=⇒

====

cc

T
c
Jc

τ
π
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Stress Concentrations in Circular 
Shafts

The derivation of the torsion formula,

assumed a circular shaft with uniform 
cross-section loaded through rigid end 
plates.

J
Tc

=maxτ (7)
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Stress Concentrations in Circular 
Shafts

The use of flange couplings, gears and 
pulleys attached to shafts by keys in 
keyways, and cross-section 
discontinuities can cause stress 
concentrations.
Experimental or numerically determined 
concentration factors are applied as

J
TcK=maxτ (8)
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Stress Concentrations in Circular 
Shafts



8

LECTURE 8. SHAFTS: POWER, STRESS CONCENTRATION, THIN-WALLED (3.7 – 3.8, 3.13) Slide No. 14
ENES 220 ©Assakkaf

Stress Concentrations in Circular 
Shafts

Example 6
The stepped shaft shown is to rotate at 900 
rpm as it transmits power from a turbine to a 
generator.  The grade of steel specified in the 
design has an allowable shearing stress of 8 
ksi. (a) For preliminary design shown, 
determine the maximum power that can be 
transmitted. (b) If in the final design the radius 
of the fillet is increased so that r = 15/16 in., 
what will be the percent change , relative to 
the preliminary design in the power?
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Stress Concentrations in Circular 
Shafts

Example 6 (cont’d)
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Stress Concentrations in Circular 
Shafts

Example 6 (cont’d)
(a) Preliminary Design:

Using Fig. 3.32, and
knowing that the following are given:
D = 7.50 in., d = 3.75 in., r = 9/16 in. = 

0.5625 in.
Therefore, 

• Hence, from Fig. 3.32

15.0
75.3

5625.0               and               2
75.3
50.7

====
d
r

d
D

33.1=K
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Stress Concentrations in Circular 
Shafts

Example 6 (cont’d)

33.1=K
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Stress Concentrations in Circular 
Shafts
Example 6 (cont’d)
Using Eq. 40,

( )
( )

( )

hp 3.889
6600

1087.5

lb/s-in 105.87  kip/s-in 9.869,53.62
60

90022

bygiven  ispower   the37, Eq. From

in-kip 3.62
33.12/75.3

8414.19

in 414.19
2
75.3

2
1

2
1

or           

6

6

max

4
4

4

max
max

=
×

=

×==





==

===∴

=





==

==

aP

fTP

Kc
JT

cJ

Kc
JT

J
TcK

ππ

τ

ππ

ττ
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Stress Concentrations in Circular 
Shafts

Example 6 (cont’d)
– Final Design:

Using Fig. 3.32, and
knowing that the following are given:
D = 7.50 in., d = 3.75 in., r = 15/16 in. = 0.9375 in.
Therefore,

• Hence, from Fig. 3.32

25.0
75.3

9375.0               and               2
75.3
50.7

====
d
r

d
D

20.1=K
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Stress Concentrations in Circular 
Shafts

Example 6 (cont’d)

20.1=K
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Stress Concentrations in Circular 
Shafts
Example 6 (cont’d)
Using Eq. 40,

( )
( )

( )

%11
3.889

3.889985100  in   Change       hp 985
6600

1050.6

lb/s-in 106.50  kip/s-in 1.503,60.69
60

90022

bygiven  ispower   the37, Eq. From

in-kip 69
20.12/75.3

8414.19

in 414.19
2
75.3

2
1

2
1

or           

6

6

max

4
4

4

max
max

=
−

==
×

=

×==





==

===∴

=





==

==

PP

fTP

Kc
JT

cJ

Kc
JT

J
TcK

b

ππ

τ

ππ

ττ
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Torsion of Noncircular Members

Bar of Rectangular Cross Section
The maximum shearing stress and the angle of 
twist for a uniform bar of rectangular cross 
section, and subjected to pure torsion T are 
given by

2
1

max abk
T

=τ

Gabk
TL

3
2

=φ

The coefficients k1 and k2 can be obtained from Table 1.

(9)

(10)

a

b

T

T

L

τmax
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Torsion of Noncircular Members

Table 1. Coefficients for Rectangular Bars in Torsion

0.3330.333∞

0.3120.31210.0

0.2910.2915.0

0.2810.2824.0

0.2630.2673.0

0.2490.2582.5

0.2290.2462.0
0.19580.2311.5
0.16610.2191.2
0.14060.2081.0
k2k1a/b

Beer and 
Johnston,

2002
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Torsion of Noncircular Members

Thin-Walled Hollow Shafts
– It was indicated earlier that the 

determination of the stresses in noncircular 
members generally requires the use of 
advanced mathematical methods.

– In the case of thin-walled hollow 
noncircular shaft (Fig. 16), however, a 
good approximation of the distribution of 
stresses can be obtained.
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Torsion of Noncircular Members

Thin-Walled Hollow Shafts

t

τ

Figure 16
t

Ab
τ

Center line or 
Mean Perimeter
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Torsion of Noncircular Members

Thin-Walled Hollow Shafts
– The shearing stress τ at any given point of 

the wall may be expressed in terms of the 
torque T as

btA
T

2
=τ

t

Ab
τ

(11)

Ab = area bounded by center line
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Thin-Walled Hollow Shafts
– The shearing stress τ of Eq. 11 represents 

the average value of the shearing stress 
across the wall.

– However, for elastic deformations the 
distribution of the stress across the wall 
may be assumed uniform, and Eq. 11 will 
give the actual value of the shearing stress 
at a given point of the wall.

Torsion of Noncircular Members
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Torsion of Noncircular Members

Thin-Walled Hollow Shafts
The angle of twist of a thin-walled shaft of 
length L and modulus of rigidity G is given by

Where the integral is computed along the 
center line of the wall section. 

∫=
t

ds
GA

TL

b
24

φ (12)t

τ
L
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Torsion of Noncircular Members

Example 7
Using τall = 40 MPa, determine the largest 
torque which may be applied to each of the 
brass bars and to the brass tube shown.  
Note that the two solid bars have the same 
cross-sectional area, and that the square 
bar and square tube have the same 
outside dimensions
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Torsion of Noncircular Members

T1 T2

T3

40 mm 40
 m

m

64
 m

m

25 mm 40
 m

m

40 mm

Figure 17

(1) (2) (3)

mm 6=t
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Torsion of Noncircular Members

Example 7 (cont’d)
1. Bar with Square Cross Section:

For a solid bar of rectangular cross section, 
the maximum shearing stress is given by Eq. 
9:

where the coefficient k1 is obtained from 
Table 1, therefore

2
1

max abk
T

=τ

208.0        00.1               m 040.0 1 ==== k
b
aba
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Torsion of Noncircular Members

Example 7 (cont’d)
For τmax = τall = 40 MPa, we have

2. Bar with Rectangular Cross Section:
( )( )

mN 532
04.004.0208.0

40    12
1

2
1

1
max ⋅=⇒== TT

abk
Tτ

259.0 :gives  1 Table ion,interpolatBy 

56.2
025.0
064.0           m 025.0               m 064.0

1 =

====

k
b
aba
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Torsion of Noncircular Members

Example 7 (cont’d)

3. Square Tube:
For a tube of thickness t, the shearing stress 
is given by Eq. 11 as

( )( )
mN 414  

025,0064.0259.0
40    22

2
2

1

2
max ⋅=⇒== TT

abk
Tτ

btA
T

2
=τ
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Torsion of Noncircular Members

Example 7 (cont’d)
where Ab is the area bounded by the center line 
of the cross section, therefore,

( ) 23 m10156.1)034.0(034.0 −×==bA

34 mm40 mm

34 mm
40 mm

mm 6=t

LECTURE 8. SHAFTS: POWER, STRESS CONCENTRATION, THIN-WALLED (3.7 – 3.8, 3.13) Slide No. 35
ENES 220 ©Assakkaf

Torsion of Noncircular Members

Example 7 (cont’d)
τ = τall = 40 MPa and t = 0.006 m.
Substituting these value into Eq. 11 gives

( )( )

mN 555

10156.1006.02
40

2

3

3
3

⋅=∴

×
=

=

−

T

T
tA
T

b

τ
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Torsion of Noncircular Members

Example 8
Structural aluminum tubing of 2.5 × 4-in. 
rectangular cross section was fabricated by 
extrusion.  Determine the shearing stress 
in each of the four walls of a portion of 
such tubing when it is subjected to a torque 
of 24 kip·in., assuming (a) a uniform 0.160-
in. wall thickness (Figure 18a), (b) that, as 
a result of defective fabrication, walls AB
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Torsion of Noncircular Members

Example 8 (cont’d)
and AC are 0.120-in thick, and walls BD
and CD are 0.200-in thick (Fig. 18b)

Figure 18

4 in.

2.5 in.

A B

C D

0.160 in.

0.160 in.

4 in.

2.5 in.

A B

C D

0.120 in.
0.200 in.

(a) (b)
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Torsion of Noncircular Members

Example 8 (cont’d)
(a) Tubing of Uniform Wall Thickness:

The area bounded by the center line (Fig. 19) is 
given by

( )( ) 2in 986.834.284.3 ==bA

3.84 in.

2.34 in.

A B

C D

0.160 in.

0.160 in.

Figure 19
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Torsion of Noncircular Members

Example 8 (cont’d)
Since the thickness of each of the four walls is t
= 0.160 in., we find from Eq. 11 that the 
shearing stress in each wall is

(b) Tubing with Variable Wall Thickness:
Observing that the area Ab bounded by the 
center line is the same as in Part a, and 
substituting t = 0.120 in. and t = 0.200 in. into

( )( ) ksi 35.8
986.8160.02

24
2

===
btA

Tτ
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Torsion of Noncircular Members

Example 8 (cont’d)
• Eq. 11, the following values for the shearing 

stresses are obtained:

• Note that the stress in a given wall depends 
only upon its thickness t.

( )( )

( )( ) ksi 68.6
986.8200.02

24        

and

ksi 13.11
986.8120.02

24        

===

===

CDBD

ACAB

ττ

ττ


