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Stresses in Oblique Planes

Up to this point, the stresses in a shaft 
has been limited to shearing stresses.
This due to the fact that the selection of 
the element under study was oriented in 
such a way that its faces were either 
perpendicular or parallel to the axis of 
the shaft (see Fig. 15)
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Stresses in Oblique Planes
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Fig. 15
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Stresses in Oblique Planes

From our discussion of the torsional
loading on a shaft, we know this loading 
produces shearing stresses τ in the 
faces perpendicular to the axis of the 
shaft.
But due to equilibrium requirement, 
there are equal stresses on the faces 
formed by the two planes containing the 
axis of the shaft. 
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
– It is necessary to make sure that whether 

the transverse plane is a plane of 
maximum shearing stress and whether 
there are other significant stresses induced 
by torsion.

– Consider the following shaft (Fig. 16), 
which is subjected to a torque T.
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
– The stresses at point A in the shaft of Fig. 

16a is analyzed.
– A differential element taken from the shaft 

at point A and the stresses acting on 
transverse and longitudinal planes are 
shown in Fig. 16b.

– The shearing stress τxy can be determined 
from  

J
Tc

xy =τ
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
– Let assume that differential element of Fig. 

16b has length dx, height dy, and thickness 
dz.

– If a shearing force Vx = τxy dx dy is applied 
to the top surface of the element, the 
equation of equilibrium ∑Fx = 0 then will 
require application of an opposite shear 
force V’

x at the bottom of the element.
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
– If ∑Fx = 0 then requires application of an 

opposite shear force V’
x at the bottom of 

the element, then it will the element 
subjected to a clockwise couple.

– This clockwise couple must be balanced by 
counterclockwise couple composed of Vx
applied to the vertical faces of the element.
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
– The application of the equilibrium moment 

equation ∑Mz = 0 gives

– From which the important result
( ) ( )dxdzdydydzdx xyyx     ττ =

xyyx ττ = (27)
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
– If the equations of equilibrium are applied 

to the free-body diagram of Fig. 16c (which 
is a wedge-shaped part of the differential 
element of Fig. 16b with dA being the area 
of the inclined face), the following results 
are obtained

( ) ( ) 0sinsincoscos
0  

=+−

=+ ∑
αατααττ dAdAdA

F

yxxynt

t

(28)
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Stresses in Oblique Planes

Other Stresses Induced By Torsion

x

y A
Fig. 16

x

y

xyτ
xyτ

yxτ

yxτ

(a)

(b)
x

yt

α

α

n

σn dA

τn t dA

α

τyx dA sin α

τ x
 y

 d
A

co
sα

(c)

LECTURE 7. SHAFTS: STATICALLY INDETERMINATE SHAFTS (3.6) Slide No. 13
ENES 220 ©Assakkaf

Stresses in Oblique Planes

Other Stresses Induced By Torsion
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
– Likewise, if we take summation of forces in 

the n direction (see Fig. 16c), then the 
results would be

( ) ( ) 0cossinsincos
0  

=−−

=+ ∑
ααταατσ dAdAdA

F

yxxyn

n

(30)
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
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Stresses in Oblique Planes

Maximum Normal Stress due to Torsion 
on Circular Shaft

The maximum compressive normal stress 
σmax can be computed from

J
cTmax

maxmax ==τσ (32)
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Stresses in Oblique Planes

Example 4
A cylindrical tube is fabricated by butt-welding a 6 
mm-thick steel plate along a spiral seam as 
shown.  If the maximum compressive stress in the 
tube must be limited to 80 MPa, determine (a) the 
maximum torque T that can be applied and (b) the 
factor of safety with respect to the failure by 
fracture for the weld, when a torque of 12 kN.m is 
applied, if the ultimate strengths of the weld metal 
are 205 MPa in shear and 345 MPa in tension.
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Stresses in Oblique Planes

Example 4 (cont’d)
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Fig. 18
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Stresses in Oblique Planes

Example 4 (cont’d)
(a) The polar moment of area for the cylindrical 

tube can be determined from Eq.14 as

The maximum torque can be computed from 
Eq. 32 as
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Stresses in Oblique Planes

Example 4 (cont’d)
(b)The normal stress σn and shear stress τnt on  

the weld surface are given by Eqs. 30 and 29 
as 
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Stresses in Oblique Planes

Example 4 (cont’d)
The factors of safety with respect to failure 
by fracture for the weld are
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Statically Indeterminate Shafts

Up to this point, all problems discussed 
are statically determinate, that is, only 
the equations of equilibrium were 
required to determine the torque T at 
any section of the shaft.
It is often for torsionally loaded 
members to be statically indeterminate 
in real engineering applications.
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Statically Indeterminate Shafts

When this occurs, distortion equations 
involving angle of twist θ must written 
until the total number of equations 
agrees with the number of unknowns to 
be determined.
A simplified angle of twist diagram will 
often be of great assistance in obtaining 
the correct equations.
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Statically Indeterminate Shafts

Example 5
A steel shaft and aluminum tube are 
connected to a fixed support and to a rigid 
disk as shown in the figure.  Knowing that 
the initial stresses are zero, determine the 
minimum torque T0 that may be applied to 
the disk if the allowable stresses are 120 
MPa in the steel shaft and 70 MPa in the 
aluminum tube.  Use G = 80 GPa for steel 
and G = 27 GPa for aluminum. 
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Statically Indeterminate Shafts

Example 5 (cont’d)

500 mm

Aluminum

50 mm Steel

Rigid disk

76 mm

8 mm
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Statically Indeterminate Shafts

Example 5 (cont’d)
– Free-body diagram for the rigid disk

– Deformation
T0

Tal

Tst stal0        
statics, From

TTT +=

stst

stst

alal

alal
stal    

GJ
LT

GJ
LT

=⇒=θθ

(39)

(40)
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Statically Indeterminate Shafts

Example 5 (cont’d)
– Properties of the aluminum tube

76 mm

38 mm

30 mm
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Example 5 (cont’d)
– Properties of the steel tube

50 mm

25 mm
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Statically Indeterminate Shafts
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Statically Indeterminate Shafts

Example 5 (cont’d)
Substituting these input values in Eq. 40, 
gives 

( )
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Statically Indeterminate Shafts

Example 5 (cont’d)
Let’s assume that the requirement τst is 
less or to equal to 120 MPa, therefore

From Eq. 39, we have

mN 2945
025.0

)106136.0(10120 66

st

stst
st ⋅=
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c
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Statically Indeterminate Shafts

Example 5 (cont’d)
Let’s check the maximum stress τal in 
aluminum tube corresponding to Tal = 3244 
N·m:

Hence, the max permissible torque T0 is 
computed from Eq. 39 as 

OK MPa 70 MPa 5.61
10003.2
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Statically Indeterminate Shafts
Example 6

A circular shaft AB consists 
of a 10-in-long, 7/8 in-
diameter steel cylinder, in 
which a 5-in.-long, 5/8-in.-
diameter cavity has been 
drilled from end B.  The 
shaft is attached to fixed 
supports at both ends, and a 
90 lb – ft torque is applied at 
its mid-section.  Determine 
the torque exerted on the 
shaft by each of the 
supports.

LECTURE 7. SHAFTS: STATICALLY INDETERMINATE SHAFTS (3.6) Slide No. 33
ENES 220 ©Assakkaf

Statically Indeterminate Shafts
Example 6

• Given the shaft dimensions and the applied 
torque, we would like to find the torque reactions 
at A and B.

• From a free-body analysis of the shaft,

which is not sufficient to find the end torques.  
The problem is statically indeterminate.

ftlb90 ⋅=+ BA TT

ftlb90
12

21 ⋅=+ AA T
JL
JLT

• Substitute into the original equilibrium equation,

AB
BA T

JL
JLT

GJ
LT

GJ
LT

12

21

2

2

1

1
21 0 ==−=+= φφφ

• Divide the shaft into two components which 
must have compatible deformations,


