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m Up to this point, the stresses in a shaft
has been limited to shearing stresses.

m This due to the fact that the selection of
the element under study was oriented in
such a way that its faces were either
perpendicular or parallel to the axis of
the shaft (see Fig. 15)
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*Stresses in Oblique Planes
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i Stresses in Oblique Planes

m From our discussion of the torsional
loading on a shaft, we know this loading
produces shearing stresses zin the
faces perpendicular to the axis of the
shaft.

m But due to equilibrium requirement,
there are equal stresses on the faces
formed by the two planes containing the
axis of the shaft.
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g Stresses in Oblique Planes

m Other Stresses Induced By Torsion

— It is necessary to make sure that whether
the transverse plane is a plane of
maximum shearing stress and whether
there are other significant stresses induced
by torsion.

— Consider the following shaft (Fig. 16),
which is subjected to a torque T.
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g Stresses in Oblique Planes

m Other Stresses Induced By Torsion

7.,dA cos a

Ty (b)
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m Other Stresses Induced By Torsion

— The stresses at point A in the shaft of Fig.
16a is analyzed.

— A differential element taken from the shaft
at point A and the stresses acting on
transverse and longitudinal planes are
shown in Fig. 16b.

— The shearing stress z,, can be determined

from Tc
T. . =—
xy J
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i Stresses in Oblique Planes

m Other Stresses Induced By Torsion

— Let assume that differential element of Fig.
16b has length dx, height dy, and thickness
dz.

— If a shearing force V, = 7, dx dy is applied
to the top surface of the element, the
equation of equilibrium X2 F, = 0 then will
require application of an opposite shear
force V at the bottom of the element.
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m Other Stresses Induced By Torsion
V.=1,dxdz

V.

X

V,=t,dydz
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m Other Stresses Induced By Torsion

— If 2F, = 0 then requires application of an
opposite shear force V/, at the bottom of
the element, then it will the element
subjected to a clockwise couple.

— This clockwise couple must be balanced by

counterclockwise couple composed of V,
applied to the vertical faces of the element.
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Stresses in Oblique Planes

m Other Stresses Induced By Torsion

— The application of the equilibrium moment
equation >M, = 0 gives

T, N(dxdz)dy =7, (dy dz) dx

— From Which the |mportant result

z-yx - Z-xy (27)
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m Other Stresses Induced By Torsion

— If the equations of equilibrium are applied
to the free-body diagram of Fig. 16¢ (which
is a wedge-shaped part of the differential
element of Fig. 16b with dA being the area
of the inclined face), the following results
are obtained

(28)
+\ZFt =0
T, dA—1, (dAcosa)cosa+r (dAsina)sina =0




‘v LECTURE 7. SHAFTS: STATICALLY INDETERMINATE SHAFTS (3.6) Slide No. 12

—
ENES 220 ©Assakkaf

Stresses in Oblique Planes

m Other Stresses Induced By Torsion
Fig. 16
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Stresses in Oblique Planes

m Other Stresses Induced By Torsion

+ > F=0
7, dA-7,, (dAcosa)cosar + T, (dAsina)sina =0

From which

- 2 in2og)=
T, —TX},(cos a—sin a)—z'xy cos2a (29)

7,, dA4 sin
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m Other Stresses Induced By Torsion

— Likewise, if we take summation of forces in
the n direction (see Fig. 16¢), then the
results would be

+ D F,=0

o, dA-7 (ddcosa)sina -1, (ddsina)cosa =0 (30)
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Stresses in Oblique Planes
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m Other Stresses Induced By Torsion

+7) F,=0

o, dd-z7, (dAcosa)sina — Th (d4sina)cosa =0
From which

o, =27, sinacosa =7, sin2a (3 1)

7,, dA4 sin
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m Maximum Normal Stress due to Torsion
on Circular Shaft

The maximum compressive normal stress

Omax Can be computed from
e
O-max - Tmax o T (32)
J
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m Example 4

A cylindrical tube is fabricated by butt-welding a 6
mm-thick steel plate along a spiral seam as
shown. If the maximum compressive stress in the
tube must be limited to 80 MPa, determine (a) the
maximum torque T that can be applied and (b) the
factor of safety with respect to the failure by
fracture for the weld, when a torque of 12 kN.m is
applied, if the ultimate strengths of the weld metal
are 205 MPa in shear and 345 MPa in tension.
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m Example 4 (cont’d)
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Stresses in Oblique Planes

m Example 4 (cont’d)
(a) The polar moment of area for the cylindrical
tube can be determined from Eq.14 as

4 4
72T )= 2| (120} (1392611 14 096510° mm*
2 2|\ 2 2

The maximum torque can be computed from
Eq. 32 as

T..cC O 80x10°(14.096x10™
Gmax = :> 71max = = -3
J c 75x107

=15.036x10° N-m =15.036 kN -m
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Stresses in Oblique Planes o

m Example 4 (cont’d)
(b)The normal stress o;,, and shear stress 7,, on
the weld surface are given by Eqgs. 30 and 29
as

12><103(75><10 )

o,=T1, sm2a—%s 2a in2(60°) = 55.29 MPa (T)

14.096x10°°
7, =1, cos2a—T—c s2a _12x10° (75X1_(Z ) c0s2(60°) =-31.92 MPa
J 14.096x10
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Stresses in Oblique Planes

m Example 4 (cont’d)

The factors of safety with respect to failure
by fracture for the weld are

Fs, =Cu 3% oy
o, 5529
Fs == 205 64

Toor, 3192

tn
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Statically Indeterminate Shafts

m Up to this point, all problems discussed
are statically determinate, that is, only
the equations of equilibrium were
required to determine the torque T at
any section of the shaft.

m |t is often for torsionally loaded
members to be statically indeterminate
in real engineering applications.
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Statlcally Indeterminate Shafts

m \WWhen this occurs, distortion equations
involving angle of twist 8 must written
until the total number of equations
agrees with the number of unknowns to
be determined.

m A simplified angle of twist diagram will
often be of great assistance in obtaining
the correct equations.
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m Example 5

A steel shaft and aluminum tube are
connected to a fixed support and to a rigid
disk as shown in the figure. Knowing that
the initial stresses are zero, determine the
minimum torque T, that may be applied to
the disk if the allowable stresses are 120
MPa in the steel shaft and 70 MPa in the
aluminum tube. Use G = 80 GPa for steel
and G = 27 GPa for aluminum.
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m Example 5 (cont’d)

/ Aluminum
Rigid disk

‘Smm

)

/N

76 mm 50 mm Steel

500 mm
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Statlcally Indeterminate Shafts

m Example 5 (cont’d)
— Free-body diagram for the rigid disk

Tal
\ From statics,
TO
T.=T +T 39
—Defngﬁ‘lation o=Ta+le (39)
r.L, T.L
0a1 :05t — al _ Tstst (40)

Jal Ga Jst Gst
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Statlcally Indeterminate Shafts R

m Example 5 (cont’d)

— Properties of the aluminum tube

G, =27GPa
38 mm " 7 =30mm=0.030m
30 mm o r =38mm=0.038m
_r 4 a]_
R Y

=2.003x10°m*
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m Example 5 (cont’d)
— Properties of the steel tube

G, =80GPa
25 mm c=25mm=0.025m

T, =%[(0.025)4]=
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Statlcally Indeterminate Shafts
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m Example 5 (cont’d)
Substituting these input values in Eq. 40,

gives
];1 L al __ T;t L st
Jal Gal Jst Gst

7,005 _  T,(05)
2.003x107°(27) 0.6136x107°(80)

T, = 0.9087, (41)
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m Example 5 (cont’d)

Let's assume that the requirement z; is
less or to equal to 120 MPa, therefore

., 120x10°(0.6136x10™°)
Cy 0.025

From Eq. 39, we have

T

st

=2945N-m

T, =0.9087,
2945=0.9087, = T, =3244N-m

& ‘* LECTURE 7. SHAFTS: STATICALLY INDETERMINATE SHAFTS (3.6) Slide No. 31

Statlcally Indeterminate Shafts
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m Example 5 (cont’d)
Let's check the maximum stress z in
aluminum tube corresponding to T, = 3244
N-m: . _Tye, _3244(0.038)

T, 2.003x107°

Hence, the max permissible torque T, is
computed from Eq. 39 as

=61.5MPa <70 MPa OK

T,=T,+T, =3244+2945=6189N-m
=6.2kN-m
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m Example 6

A circular shaft AB consists
of a 10-in-long, 7/8 in-
diameter steel cylinder, in
which a 5-in.-long, 5/8-in.-
diameter cavity has been
drilled from end B. The
shaft is attached to fixed
supports at both ends, and a
90 Ib — ft torque is applied at
its mid-section. Determine
the torque exerted on the
shaft by each of the
supports.
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m Example 6

* Given the shaft dimensions and the applied
torque, we would like to find the torque reactions
at 4 and B.

* From a free-body analysis of the shaft,
TA +TB =901b-ft

which is not sufficient to find the end torques.
The problem is statically indeterminate.

* Divide the shaft into two components which
must have compatible deformations,

Tyl Tl LiJ,
—+¢, =-A_TB2 _ Tp = 172
P=h+h NG )G B0

* Substitute into the original equilibrium equation,

T, +L1J2T =901b-ft
LyJ




