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Torsion Loading

Introduction
– Members subjected to axial loads were 

discussed previously.
– The procedure for deriving load-

deformation relationship for axially loaded 
members was also illustrated.

– This chapter will present a similar 
treatment of members subjected to torsion 
by loads that to twist the members about 
their longitudinal centroidal axes.
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Torsion Loading

• Interested in stresses and strains of 
circular shafts subjected to twisting 
couples or torques

• Generator creates an equal and 
opposite torque T’

• Shaft transmits the torque to the 
generator

• Turbine exerts torque T on the shaft

Torsional Loads on Circular Shafts
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Torsion Loading

( )∫ ∫== dAdFT τρρ

• Net of the internal shearing stresses is an 
internal torque, equal and opposite to the 
applied torque,

• Although the net torque due to the shearing 
stresses is known, the distribution of the 
stresses is not

• Unlike the normal stress due to axial loads, 
the distribution of shearing stresses due to 
torsional loads can not be assumed uniform.

• Distribution of shearing stresses is statically 
indeterminate – must consider shaft 
deformations

Net Torque Due to Internal Stresses
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Torsion Loading

Introduction
Cylindrical members

Fig. 1
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Torsion Loading

Introduction
Rectangular members

Fig. 2
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Torsion Loading

Introduction
– This chapter deals with members in the 

form of concentric circular cylinders, solid 
and hollow, subjected to torques about 
their longitudinal geometric axes.

– Although this may seem like a somewhat a 
special case, it is evident that many torque-
carrying engineering members are 
cylindrical in shape. 
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Torsion Loading

Deformation of Circular Shaft
– Consider the following shaft

a b
c d

l

T
T

Fig. 3

l
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Torsion Loading

Deformation of Circular Shaft
– In reference to the previous figure, the 

following observations can be noted:
• The distance l between the outside 

circumferential lines does not change 
significantly as a result of the application of the 
torque.  However, the rectangles become 
parallelograms whose sides have the same 
length as those of the original rectangles. 
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Torsion Loading

• The circumferential lines do not become 
zigzag; that is ; they remain in parallel planes.

• The original straight parallel longitudinal lines, 
such as ab and cd, remain parallel to each 
other but do not remain parallel to the 
longitudinal axis of the member.  These lines 
become helices*.

*A helix is a path of a point that moves longitudinally
and circumferentially along a surface of a cylinder
at uniform rate
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Torsion Loading

Deformation of Circular Shaft Subjected 
to Torque T

T

T

Fig. 4

a

b
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Torsion Loading

Deformation of a Bar of Square Cross 
Section Subjected to Torque T

T

T

Fig. 5

a

b
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Torsion Loading

• From observation, the angle of twist of 
the shaft is proportional to the applied 
torque and to the shaft length.

L

T

∝

∝

φ

φ

• When subjected to torsion, every cross-
section of a circular shaft remains plane 
and undistorted.

• Cross-sections of noncircular (non-
axisymmetric) shafts are distorted 
when subjected to torsion.

• Cross-sections for hollow and solid circular 
shafts remain plain and undistorted because a 
circular shaft is axisymmetric.

Shaft Deformations

LECTURE 6. SHAFTS: TORSION LOADING AND DEFORMATION (3.1 – 3.5) Slide No. 13
ENES 220 ©Assakkaf

Torsion Loading

An Important Property of Circular Shaft
– When a circular shaft is subjected to 

torsion, every cross section remains plane 
and disturbed

– In other words, while the various cross 
sections along the shaft rotate through 
different amounts, each cross section 
rotates as a solid rigid slab.
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Torsion Loading

An Important Property of Circular Shaft
– This illustrated in Fig.4b, which shows the 

deformation in rubber model subjected to torsion.
– This property applies to circular shafts whether 

solid or hollow.
– It does not apply to noncircular cross section.  

When a bar of square cross section is subjected to 
torsion, its various sections are warped and do not 
remain plane (see Fig. 5.b) 
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Torsion Loading

Stresses in Circular Shaft due to 
Torsion
– Consider the following circular shaft that is 

subjected to torsion T

AB

T

T
C

Fig. 6
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Torsion Loading

Stresses in Circular Shaft due to 
Torsion
– A section perpendicular to the axis of the 

shaft can be passed at an arbitrary point C 
as shown in Fig. 6.

– The Free-body diagram of the portion BC 
of the shaft must include the elementary 
shearing forces dF perpendicular to the 
radius ρ of the shaft.  
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Torsion Loading

Stresses in Circular Shaft due to 
Torsion

ρ

dF = τρ dA

T T

B C

Fig. 7
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Torsion Loading

Stresses in Circular Shaft due to 
Torsion
– But the conditions of equilibrium for BC

require that the system of these 
elementary forces be equivalent to an 
internal torque T.

– Denoting ρ the perpendicular distance from 
the force dF to axis of the shaft, and 
expressing that the sum of moments of
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Torsion Loading

Stresses in Circular Shaft due to 
Torsion
– of the shearing forces dF about the axis of 

the shaft is equal in magnitude to the 
torque T, we can write

∫∫ ===
areaarea

d   AdFTT r τρρ (1)
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Torsion Loading

Stresses in Circular Shaft due to 
Torsion

ρ
T

T

B C

∫==
area

d  ATT r τρ (2)
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Torsional Shearing Strain

If a plane transverse section before 
twisting remains plane after twisting and 
a diameter of the the section remains 
straight, the distortion of the shaft of 
Figure 7 will be as shown in the 
following figures (Figs. 8 and 9):
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Torsional Shearing Strain

• Consider an interior section of the shaft.  As a 
torsional load is applied, an element on the 
interior cylinder deforms into a rhombus.  

• Shear strain is proportional to twist and radius

maxmax    and   γργφγ
cL

c
==

L
L ρφγρφγ == or      

• It follows that

• Since the ends of the element remain planar, 
the shear strain is equal to angle of twist.

Shearing Strain
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Torsional Shearing Strain

Shearing Strain

φ
ρ

L

Fig. 8

c
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Torsional Shearing Strain

Shearing Strain ρ

φ

γ

a

a′

γ

a′

a

L

Fig. 9

small very is  because

sintan

γ

γ
L
aa

L
aa ′
≈
′

=

L
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Torsional Shearing Strain

Shearing Strain
– From Fig. 9, the length aá can be 

expressed as

– But

– Therefore,

γγ LLaa ==′ tan

ρφ=′aa

L
L ρφγρφγ =⇒=

(3)

(4)

(5)
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Torsional Shearing Strain

Shearing Strain
For radius ρ, the shearing strain for circular 
shaft is

For radius c, the shearing strain for circular 
shaft is

L
ρφγ ρ =

L
c

c
φγ =

(6)

(7)
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Torsional Shearing Strain

Shearing Strain
Combining Eqs. 6 and 7, gives

Therefore

c
LL cγ

ρ
γ

φ ρ ==

ργγ ρ c
c=

(8)

(9)
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Torsional Shearing Stress

The Elastic Torsion Formula
If Hooke’s law applies, the shearing stress 
τ is related to the shearing strain γ by the 
equation

where G = modulus of rigidity.  Combining 
Eqs. 9 and 10, results in

γτ G= (10)

ρττρττ
ρ

ρ

cGcG
cc =⇒=   (11)

LECTURE 6. SHAFTS: TORSION LOADING AND DEFORMATION (3.1 – 3.5) Slide No. 29
ENES 220 ©Assakkaf

Torsional Shearing Stress

The Elastic Torsion Formula
When Eq. 11 is substituted into Eq. 2, the 
results will be as follows:

∫

∫∫

∫

=







=






=

==

area

2

area0

area

d           

dd          

d  

A
c

A
c

A
c

ATT

c

c
c

c

r

ρτ

ρτρρτρ

τρ

(12)
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Torsional Shearing Stress

Polar Moment of Inertia
The integral of equation 12 is called the 
polar moment of inertia (polar second 
moment of area).
It is given the symbol J.  For a solid circular 
shaft, the polar moment of inertia is given 
by 

( )
2

d 2d
4

0

22 cAJ
c πρπρρρ === ∫∫ (13)

LECTURE 6. SHAFTS: TORSION LOADING AND DEFORMATION (3.1 – 3.5) Slide No. 31
ENES 220 ©Assakkaf

Torsional Shearing Stress

Polar Moment of Inertia
– For a circular annulus as shown, the polar 

moment of inertia is given by

( )

( )44
44

22

222
   

d 2d

io

c

b

rrbc

AJ

−=−=

== ∫∫
πππ

ρπρρρ

(14)

r0 = outer radius and ri = inner radius

•

c

b
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Torsional Shearing Stress

Shearing Stress in Terms of Torque and 
Polar Moment of Inertia
– In terms of the polar second moment J, Eq. 

12 can be written as

– Solving for shearing stress,
c
JA

c
TT cc

r
τρτ

=== ∫
area

2d 

J
Tc

c =τ

(15)

(16)
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Torsional Shearing Stress

Shearing Stress in Terms of Torque and 
Polar Moment of Inertia

J
T

J
Tc

ρτ

τ

ρ =

=max (17a)

(18a)

τ= shearing stress, T = applied torque
ρ = radius, and J = polar moment on inertia
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Torsional Shearing Stress

Distribution of Shearing Stress within 
the Circular Cross Section

τ

ρ

τmax
τ

ρ

τmax

c ro

ri

τmin
J

Tc
c =τ

Fig. 10
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J
c

dA
c

dAT max2max τρτρτ ∫ =∫ ==

• Recall that the sum of the moments from 
the internal stress distribution is equal to 
the torque on the shaft at the section,

4
2
1 cJ π=

( )4
1

4
22

1 ccJ −= π
   and   max J

T
J

Tc ρττ ==

• The results are known as the elastic torsion 
formulas,

• Multiplying the previous equation by the 
shear modulus,

maxγργ G
c

G =

maxτρτ
c

=

From Hooke’s Law, γτ G= , so

The shearing stress varies linearly with the 
radial position in the section.

Stresses in Elastic Range
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Torsional Shearing Stress

Example 1
– A hollow cylindrical steel shaft is 1.5 m 

long and has inner and outer diameters 
equal to 40 mm and 60 mm.  (a) What is 
the largest torque which may be applied to 
the shaft if the shearing stress is not to 
exceed 120 MPa?  (b) What is the 
corresponding minimum value of the 
shearing stress in the shaft?
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Torsional Shearing Stress

Example 1 (cont’d)

T

T

60 mm
40 mm

Fig. 11

1.2 m
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Torsional Shearing Stress

Example 1 (cont’d)
– (a) Largest Permissible Torque

c
JT

J
Tc max

maxmax            

17aEq.Using
ττ =⇒=

( ) ( ) ( )[ ]
46

4444

m 10021.1          

02.003.0
22

       

,gclaculatinfor 14Eq.Using

−×=

−=−=
ππ

io rrJ

J

(19)
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Torsional Shearing Stress

Example 1 (cont’d)
Substituting for J and τmax into Eq. 19, we have

(b) Minimum Shearing Stress

( )( ) mkN 05.4
03.0

1012010021.1 66
max ⋅=

××
==

−

or
JT τ

MPa 3.79
10021.1

)02.0(1005.4
6

3

=
×

×
== −J

Tri
ρτ
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Torsional Displacements

Angle of Twist in the Elastic Range
– Often, the amount of twist in a shaft is of 

importance.
– Therefore, determination of angle of twist is 

a common problem for the machine 
designer.

– The fundamental equations that govern the 
amount of twist were discussed previously
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Torsional Displacements

Angle of Twist in the Elastic Range
– The basic equations that govern angle of 

twist are
– Recall Eqs. 6,

dL
d

L
θργρφγ ρρ == or           (20)
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Torsional Displacements

Angle of Twist in the Elastic Range

γ
τ

ρττ ρ

=

==

G

J
T

J
Tc

c

                 

and

or        (21)

(22)
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Torsional Displacements

Angle of Twist in the Elastic Range
– Recall Eq. 17a and 7

– Combining these two equations, gives
J

Tc
=maxτ

L
cθγ =max

GJ
TL

c
L

GJ
Tc

c
L

Gc
L

=







===

   

1maxmax τγθ
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Torsional Displacements

Angle of Twist in the Elastic Range
The angle of twist for a circular uniform 
shaft subjected to external torque T is 
given by 

GJ
TL

=θ (22)
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Torsional Displacements

Angle of Twist in the Elastic Range
– Multiple Torques/Sizes

• The expression for the angle of twist of the 
previous equation may be used only if the shaft 
is homogeneous (constant G) and has a 
uniform cross sectional area A, and is loaded at 
its ends.

• If the shaft is loaded at other points, or if it 
consists of several portions of various cross 
sections, and materials, then
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Torsional Displacements

Angle of Twist in the Elastic Range
– Multiple Torques/Sizes

• It needs to be divided into components which 
satisfy individually the required conditions for 
application of the formula.

• Denoting respectively by Ti, Li, Ji, and Gi, the 
internal torque, length, polar moment of area, 
and modulus of rigidity corresponding to 
component i,then

∑∑
==

==
n

i ii

ii
n

i
i JG

LT
11

θθ (23)
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Multiple Torques/Sizes

E1 E2 E3

L1 L2 L3

∑∑
==

==
n

i ii

ii
n

i
i JG

LT
11

θθ

Circular ShaftsFig. 12

Torsional Displacements
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Torsional Displacements

Angle of Twist in the Elastic Range
The angle of twist of various parts of a 
shaft of uniform member can be given by

∑∑
==

==
n

i ii

ii
n

i
i JG

LT
11

θθ (24)

LECTURE 6. SHAFTS: TORSION LOADING AND DEFORMATION (3.1 – 3.5) Slide No. 49
ENES 220 ©AssakkafAngle of Twist in Elastic Range

• Recall that the angle of twist and maximum 
shearing strain are related,

L
cφγ =max

• In the elastic range, the shearing strain and shear 
are related by Hooke’s Law,

JG
Tc

G
== max

max
τγ

• Equating the expressions for shearing strain and 
solving for the angle of twist,

JG
TL

=φ

• If the torsional loading or shaft cross-section 
changes along the length, the angle of rotation is 
found as the sum of segment rotations

∑=
i ii

ii
GJ
LTφ
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Torsional Displacements

Angle of Twist in the Elastic Range
If the properties (T, G, or J) of the shaft are 
functions of the length of the shaft, then

∫=
L

dx
GJ
T

0

θ (25)
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Torsional Displacements

Angle of Twist in the Elastic Range
– Varying Properties

x

×

∫=
L

dx
GJ
T

0

θL

Fig. 13
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Torsional Displacements

Example 2
– What torque should be applied to the end 

of the shaft of Example 1 to produce a twist 
of 20?  Use the value G = 80 GPa for the 
modulus of rigidity of steel.
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Torsional Displacements

Example 2 (cont’d)

T

T

60 mm
40 mm

Fig. 14

1.2 m
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Torsional Displacements

Example 2 (cont’d)
Solving Eq. 22 for T, we get

Substituting the given values 

θ
L

JGT = (26)

rad 109.34
360

rad 22

m 5.1               Pa 1080

3
0

0

9

−×=





=

=×=

πθ

LG
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Torsional Displacements

Example 2 (cont’d)
From Example 1, J was computed to give a 
value of 1.021×10-6 m4.
Therefore,using Eq. 26

( )( )( )
mkN 1.9mN 109.1   

109.34
5.1

108010021.1

3

3
96

⋅=⋅×=

×
××

== −
−

θ
L

JGT
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Torsional Displacements

Example 3
What angle of twist will create a shearing 
stress of 70 MPa on the inner surface of 
the hollow steel shaft of Examples 1 and 
2?

T

T
60 mm

40 mm

Fig. 14

1.2 m
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Torsional Displacements

Example 3 (cont’d)

0

69

3

66-

76.3
2
3600.65625     

 write wedegrees,in  obtain  To

65625.0
)10021.1(1080

)5.1(105735.3    

mkN 5735.3
02.0

)1070)(10(1.021                           

    

==

=
××

×
==

⋅=
××

=

=⇒=

−

π
θ

θ

φ

ρ
τρτ ρ

ρ

GJ
TL

J
T

J
T


