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Deflection by Superposition

Method of Superposition
– When a beam is subjected to several loads 

(see Fig. 18) at various positions along the 
beam, the problem of determining the 
slope and the deflection usually becomes 
quite involved and tedious.

– This is true regardless of the method used.
– However, many complex loading 

conditions are merely combinations of 
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Deflection by Superposition

Method of Superposition
relatively simple loading conditions

x

y

x

y
P P

L a b

Figure 18 (a) (b)

w1
w2
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Deflection by Superposition

Method of Superposition
– Assumptions:

• The beam behaves elastically for the combined 
loading.

• The beam also behaves elastically for the each 
of the individual loads.

• Small deflection theory.
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Deflection by Superposition

Method of Superposition
If it is assumed that the beam behaves 
elastically for the combined loading, as well 
as for the individual loads, the resulting final 
deflection of the loaded beam is simply the 
sum of the deflections caused by each of the 
individual loads.
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Deflection by Superposition

Method of Superposition
– This sum may be an algebraic one (Figure 

19) or it might be a vector sum as shown in 
Figure 20, the type depending on whether 
or not the individual deflection lie in the 
same plane.

– The superposition method can illustrated 
by various practical examples.



4

LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 – 9.8) Slide No. 6
ENES 220 ©Assakkaf

Deflection by Superposition

Method of Superposition
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Figure 19
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Method of Superposition

Principle of Superposition:

• Deformations of beams subjected to 
combinations of loadings may be 
obtained as the linear combination of 
the deformations from the individual 
loadings

• Procedure is facilitated by tables of 
solutions for common types of 
loadings and supports.
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Deflection by Superposition

Method of Superposition
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Figure 20

LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 – 9.8) Slide No. 9
ENES 220 ©Assakkaf

Deflection by Superposition

Illustrative Example for the Use of 
Superposition
– Consider the beam shown in Fig. 21, with 

a flexural rigidity of EI = 100 MN⋅m.

x

y 150 kN

20 kN/m

L = 8 m

2 m

Figure 21
D•
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Deflection by Superposition

Illustrative Example for the Use of 
Superposition
– If we are interested on finding the slope 

and the deflection, say of point D, then we 
can use the superposition method to do 
that as illustrated in the following slides.

– First we find the slope and deflection due 
the effect of each load, i.e., w, P, etc. 
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Deflection by Superposition
Illustrative Example for the Use of 
Superposition
– The resulting final slope and deflection of 

point D of the loaded beam is simply the 
sum of the slopes and deflections caused 
by each of the individual loads as shown in 
Figure 22.

– We need to find both the slope and 
deflection caused by the concentrated load 
(120 kN) and distributed load (20 kN/m)
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Deflection by Superposition

Illustrative Example for the Use of 
Superposition

x

y
150 kN

20 kN/m

L = 8 m

2 m

x

y
150 kN

L = 8 m

2 m

x

y

20 kN/m

L = 8 m

= +

Figure 22.  Original Loading is Broken into Two Individual Loads

D D D
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Illustrative Example for the Use of 
Superposition

x

y
150 kN

20 kN/m

L = 8 m

2 m

x

y
150 kN

L = 8 m

2 m

x

y

20 kN/m

L = 8 m

= +

Figure 23.  Original Deflection is Broken into Two Individual Deflections

D D D

2 m

Dδ Pδ wδ

wDPDD   todue  todue −− += δδδ

Deflection by Superposition



8

LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 – 9.8) Slide No. 14
ENES 220 ©Assakkaf

Deflection by Superposition

Illustrative Example for the Use of 
Superposition
– Slope and Deflection caused by P

• By either the direct integration or the singularity 
functions method, it can be seen that the slope 
and deflection (due to P) of point D of this 
particular loaded beam are given, respectively, 
as
( ) ( )

EI
PLy

EI
PL

PDPD 256
3      and        

32

32

=−=θ
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Deflection by Superposition

Illustrative Example for the Use of 
Superposition
– Slope and Deflection caused by P

• Therefore,

( )

( ) ( )( ) m 009.0
)10100(256

8101503
256
3

rad 003.0
)10100(32

)8(10150
32

6

333

6

232

−=
×

×
=−=

−=
×

×
=−=

EI
PLy

EI
PL

PD

PDθ (25a)

(25b)
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Deflection by Superposition

Illustrative Example for the Use of 
Superposition
– Slope and Deflection caused by w

• By either the direct integration or the singularity 
functions method, it can be seen that the slope 
and deflection (due to w) of point D of this 
particular loaded beam are given, respectively, 
as

( ) ( )

( ) ( )xLLxx
EI

wy

LLxx
EI

w

PD

PD

334

323

2
24

64
24

−+−=

−+−=θ (26a)

(26b)
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Deflection by Superposition

Illustrative Example for the Use of 
Superposition
– Slope and Deflection caused by w

• With w = 20 kN/m, x = 2 m, and L = 8 m, thus

( ) ( ) ( )( )

( ) ( ) ( )( ) m 0076.0912
1010024

10202
24

rad 00293.0356
1010024

102064
24

6

3
334

6

3
323

−=−
×

×
=−+−=

−=−
×

×
=−+−=

xLLxx
EI

wy

LLxx
EI

w

PD

PDθ
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Deflection by Superposition

Illustrative Example for the Use of 
Superposition
– Combining the slopes and deflections 

produced by the concentrated (P) and 
distributed (w) loads, the results are

( ) ( )

( ) ( ) mm 6.16m 0166.00076.0009.0

rad 00593.000293.0003.0

==−−=+=

−=−−=+=

wDPDD

wDPDD

yyy

θθθ
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Illustrative Example for the Use of 
Superposition

x

y
150 kN

20 kN/m

L = 8 m

2 m

x

y
150 kN

L = 8 m

2 m

x

y

20 kN/m

L = 8 m

= +

Figure 24.  Total Slope and Deflection of Point D

D D D

2 m

Dδ ( )PDδ ( )wDδ

( ) ( ) ( ) ( )wDpDDwDpDD yyy +=+=    and  θθθ
Dθ

( )wDθ

( )PDθ

Deflection by Superposition
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Deflection by Superposition

General Procedure of Superposition
– It is evident from the last results that the 

slope or deflection of a beam is the sum of 
the slopes or deflections produced by the 
individual loads.

– Once the slopes or deflections produced 
by a few typical individual loads have been 
determined by one of the methods already
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Deflection by Superposition

General Procedure of Superposition
– Presented, the superposition method 

provides a means of quickly solving a wide 
range of more complicated problems by 
various combinations of known results.

– As more data become available, yet a 
wider range of problems can be solved by 
the method of superposition.
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Deflection by Superposition

Slope and Deflection Tables
– To facilitate the task of practicing 

engineers, most structural and mechanical 
handbooks include tables giving the 
deflections and slopes of beams for 
various loadings and types of support.

– Such a table can be found in the textbook 
(Table B19) and provided herein in the 
next few viewgraphs (Table 1 and 2). 
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Deflection by Superposition

Slopes and Deflection Tables
Table 1a
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Deflection by Superposition

Slopes and Deflection Tables
Table 1b
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Deflection by Superposition
Slopes and Deflection Tables

Table 1c
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Deflection by Superposition

Slopes and Deflection Tables
Table 1d
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Deflection by Superposition
Slopes and Deflection Tables

Table 2a

(Beer and Johnston 1992)
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Deflection by Superposition

Slopes and Deflection Tables
Table 2b

(Beer and Johnston 1992)
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Deflection by Superposition
Slopes and Deflection Tables

Table 2c
(Beer and Johnston 1992)
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Deflection by Superposition

Use of Slopes and Deflection Tables
– Notice that the slope and deflection of the 

beam of Figures 21 and 24 (repeated here) 
of the illustrative example could have been 
determined from the table (Table 1)

x

y 150 kN

20 kN/m

L = 8 m

2 m

D•Figure 21
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Use of Slopes and Deflection Tables

x

y
150 kN

20 kN/m

L = 8 m

2 m

x

y
150 kN

L = 8 m

2 m

x

y

20 kN/m

L = 8 m

= +

Figure 24.  Total Slope and Deflection of Point D

D D D

2 m

Dδ ( )PDδ ( )wDδ

( ) ( ) ( ) ( )wDpDDwDpDD yyy +=+=    and  θθθ
Dθ

( )wDθ

( )PDθ

Deflection by Superposition
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Deflection by Superposition

Use of Slopes and Deflection Tables
– Indeed, given the information given under 

cases 5 and 6 of Tables 2c, the slope and 
deflection for any value x ≤ L/4 could have 
been expressed analytically.

– Taking the derivative of the expression 
obtained in this way, would have yielded 
the slope of the beam over the same 
interval.
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Deflection by Superposition

Use of Slopes and Deflection Tables
– The slope at both ends of the beam may 

be obtained by simply adding the 
corresponding values given in the table.

– However, the maximum deflection of the 
beam of Fig. 21 cannot be obtained by 
adding the maximum deflections of cases 5 
and 6 (Table 2c), since these deflections 
occur at different points of the beam.
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Deflection by Superposition

Use of Slopes and Deflection Tables
– Applying case 5 on the illustrative example 

to find both the slope and deflection of 
point D of the beam (Fig. 21), yields

– These values confirm the results obtained 
using Eq. 25 of the integration method.

( ) ( )[ ] ( )( ) ( )( )[ ]

( ) ( )[ ] ( )( ) ( )[ ] rad 003.068)2(3
8101006
)6(101503

6

m 009.02682
8101006
)6(10150

6

222
6

3
222

223
6

3
223

−=−−
×
×

=−−==

−=−−
×
×

=−−=

bLx
EIL
Pb

dx
dy

xbLx
EIL
Pby

PD

PD

θ
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Deflection by Superposition

Example 6
Use the method of superposition to find the 
slope and deflection at point B of the 
beam.

x

y

w
A C B

2
L

2
L
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Deflection by Superposition

Example 6 (cont’d)
The given loading can be obtained by 
superposing the loadings shown in the 
following “picture equation” (Fig. 25).  The 
beam AB is, of course, the same in each 
part of the figure.
For each the loadings 1 and 2, the slope 
and deflection at B can be determined by 
using the Tables 1 or 2. (Textbook Table 
B-19) 
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Deflection by Superposition

Example 6 (cont’d)
Figure 25

w
A C B

2
L

2
L

= w
A C B

2
L

2
L

= +

+

A C

By
Bθ

A
C

B

( )1By
( )1Bθ

A
C

B

( )2By

( )2Bθ

w
A

C
B

2
L

2
L

Loading 1 Loading 2
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For the beam and loading shown, 
determine the slope and deflection at 
point B.

SOLUTION:

Superpose the deformations due to Loading I and Loading II as shown.
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Deflection by Superposition

Example 6 (cont’d)
Loading 1:

• From Table 1a or Table 2a (also Table B-19 of 
the textbook), 

Loading 2:
• From the same tables:

( ) ( )
EI

wLy
EI

wL
BB 8

    and     
6

4

1

3

1 −=−=θ (27a)

( ) ( ) ( ) ( )
EI

wL
EI

Lwy
EI

wL
EI

Lw
CC 1288

2/    and     
486

2/ 44

2

33

2 =+=+=+=θ (27b)
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Deflection by Superposition

Example 6 (cont’d)

w
A

C B

2
L

2
L

A
C

B

( )2By

( )2Bθ( )2Cθ

( )2Cy

( )2Cy

2
L

( )2By
Slope = ( )2Cθ

In portion CB, the bending moment for loading 2
is zero, thus the elastic curve is a straight line:

( ) ( )

( ) ( ) ( )222

3

22

2

48

CCB

CB

Lyy

EI
wL

θ

θθ

+=

+== (28)

(29)

Loading 2

Figure 26
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Deflection by Superposition

Example 6 (cont’d)
Total slope and deflection:

• Slope of Point B:

• Deflection of Point B:

( ) ( )
EI

wL
EI

wL
EI

wL
BBB 48

7
486

333

21 −=+−=+= θθθ

( ) ( ) ( )

( ) ( )
EI

wL
EI

wL
EI

wLyyy

EI
wL

EI
wLL

EI
wLLyy

BBB

CCB

384
41

384
7

8

384
7

4821282
444

21

434

222

−=+−=+=

+=







+=+= θ
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Deflection by Superposition

Example 7
Use the method of superposition, 
determine the deflection at the free end of 
the cantilever beam shown in Fig. 27 in 
terms of w, L, E, and I.

x

y

w
A

CB

LL

wL

Figure 27
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Deflection by Superposition
Example 7 (cont’d)

w
A

B
C

L

Figure 28

L

=

= +

+

A B

Cδ
Cθ

A
B

C

( )1Cδ
( )1Cθ

Loading 1 Loading 2wL

A
B C

LL

w
A CB

LL

wL

A
B

C

( )2Cδ
( )2Cθ

Straight Line
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Deflection by Superposition

Example 7 (cont’d)
Using the solutions listed in Table 1a. 
Cases 1 and 2 (Textbook Table B-19) with 
P = wL

( ) ( ) ( ) ( ) ( )

( )
EI

wL
EI

wLL
EI

wL
EI

LwL

EI
wLL

EI
wL

EI
LP

L BBCCCC

24
71

683
2     

683
)2(     

4343

343

22121

−=















−−+−=

















−−+−=

++=+= θδδδδδ

LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 – 9.8) Slide No. 45
ENES 220 ©Assakkaf

Deflection by Superposition

Example 8
For the simply supported beam of Fig. 29, 
use the method of superposition to 
determine the total deflection at point C in 
terms of P, L, E, and I.

x

y P

L

L/4
B• •C

L/4

P

A D
Figure 29



24

LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 – 9.8) Slide No. 46
ENES 220 ©Assakkaf

Deflection by Superposition

Example 8 (cont’d)

x

y P

L

L/4

B
• •
C

L/4

P

A D x

y P

L

L/4

B
• •
C

L/4
A D x

y

L

L/4

B
• •
C

L/4

P

A D= +

Figure 30

From Table 1c (Text B-19)
Case 6

EI
PLy

Lx

48

2/
3

center −=

=

From Table 1b (Text B-19)
Case 5

EI
bLPby

LbLa

48
)43(

4/ ,4/3
22

center
−

−=

==

Loading 1 Loading 2
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Example 8 (cont’d)
Table 1b

Deflection by Superposition
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Example 8 (cont’d) Table 1c

Deflection by Superposition
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Deflection by Superposition
Example 8 (cont’d)
Deflection due to Loading 1:

Deflection due to Loading 2:

Therefore, total deflection of point C

( )
EI

PLyC 48

3

1 =

( ) ( ) ( ) ( )[ ]
EI

PL
EI

LLLP
EI

bLPbyC 768
11

48
4/434/

48
43 32222

2 −=
−

−=
−

−=

( ) ( )
EI

PL
EI

PL
EI

PLyyy CCC 256
9

768
11

48

333

21 −=−−=+=
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Deflection by Superposition

Example 9
Using the method of superposition, find the 
deflection at a point midway between the 
supports of the beam shown in the figure in 
terms of w, L, E, and I.

x

y wL/4

L

B C
A D

3L/4L/2

w

Figure 31
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Deflection by Superposition

Example 9 (cont’d)
The deflection at a point midway between 
the supports can be determined by 
considering the beam shown in Fig. 32.
Note that since the shear forces VB and VC
do not contribute to the deflection at any 
point in span BC, the mid-span deflection 
can be expressed as

CB MM δδδ +=mid (28)
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Deflection by Superposition
Example 9 (cont’d)

x

y wL/4

L

B C
A D

3L/4L/2

w

x

y

L

B C

4
wLVC =

16
3

4
3

4
wLLwLM C =






=

2
wLVB =

8
       

42
2wL

LwLM B

=







=

Figure 32
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Deflection by Superposition

Example 9 (cont’d)
Using the solutions listed in Table 1, Table 
2, or Table B-19 of the textbook with
MB = wL2/8 and MC = 3wL2/16 

( )( ) ( )( )

EI
wL

EI
LwL

EI
LwL

CB MM

256
5       

16
16/3

16
8/

4

2222

mid

=

+=+= δδδ
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Example 9 (cont’d) Table 1d

Deflection by Superposition
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Deflection by Superposition

Example 10
For the beam in Fig. 33, determine the 
flexural stress at point A and the deflection 
of the left-hand end.

Figure 33

w = 5 psi

P = 600 lb

A
psi 104.2 6×=E

80 in

6 in

4 in

A
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Deflection by Superposition

Example 10 (cont’d)
The stress at point A is a combination of 
compressive flexural stress due to the 
concentrated load and a tensile flexural 
stress due to the distributed load, hence,

( ) ( ) ( )( )[ ]( )
( )

( )( )
( )

on)(compressi psi 3.3330.30007.666,2     

  
12/46

280600
12/64

32/804523
33

2

−=+=

−=−=
y

y

z

z
A I

M
I

Mσ

LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 – 9.8) Slide No. 57
ENES 220 ©Assakkaf

Deflection by Superposition
Example 10 (cont’d)

w = 5 psi

P = 600 lb
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Deflection by Superposition

Example 10 (cont’d)
The deflection at the end of a cantilever 
beam with uniformly distributed load is 
given by (see Table 1a, case 2)

and with concentrated load at the end is 
given by (see Table 1a, case 1)
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Example 10 (cont’d) Table 1a

Deflection by Superposition
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Deflection by Superposition

Example 10 (cont’d)
Superimposing the results for the 
deflections due to the concentrated and 
distributed loads, the deflection at the free 
end is the vector sum:

( ) ( )

in 447.1   
   

3333.15626.0 222
0

2
0

=

+=+= zyδ

LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 – 9.8) Slide No. 61
ENES 220 ©Assakkaf

Statically Indeterminate 
Transversely Loaded Beams

The Superposition Method
– The concept of the superposition, which 

states that a slope or deflection due to 
several loads is the algebraic sum of the 
slopes or deflections to each individual 
loads acting alone can be applied to 
statically indeterminate beams.

– The superposition can provide the 
additional equations needed in the 
analysis.
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Statically Indeterminate 
Transversely Loaded Beams

The Superposition Method
– Procedure

• Selected restraints are removed and replaced by 
unknown loads, e.g., forces and couples.

• Sketching of the deformation (deflection) 
diagrams corresponding to individual loads (both 
known and unknown).

• Adding up algebraically the individual of 
components of slopes or deflections to produce 
the known configuration. 
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Statically Indeterminate 
Transversely Loaded Beams

Illustrative Example using Superposition
Determine the reactions at the supports for 
the simply supported cantilever beam 
(Fig.35) presented earlier for the 
integration method.

w
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Illustrative Example using Superposition 
Method (cont’d)
– First consider the reaction at B as 

redundant and release the beam from the 
support (remove restraint).

– The reaction RB is now considered as an 
unknown load (see Fig. 39) and will be 
determined from the condition that the 
deflection at B must be zero.

Statically Indeterminate 
Transversely Loaded Beams
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Illustrative Example using Superposition 
Method (cont’d)

Figure 39. Original Loading is Broken into Two Loads 
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Statically Indeterminate 
Transversely Loaded Beams
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Indeterminate Beams

• Method of superposition may be 
applied to determine the reactions at 
the supports of statically indeterminate 
beams.

• Designate one of the reactions as 
redundant and eliminate or modify 
the support.

• Determine the beam deformation 
without the redundant support.

• Treat the redundant reaction as an 
unknown load which, together with 
the other loads, must produce 
deformations compatible with the 
original supports.
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Illustrative Example using Superposition 
Method (cont’d)

In reference to Table 1a cases 1 and 2 
(Table B19 of Textbook):

The deflection at B in the original structural 
configuration must equal to zero, that is 
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Statically Indeterminate 
Transversely Loaded Beams
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Slopes and Deflection Tables Table 1a

Statically Indeterminate 
Transversely Loaded Beams
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Illustrative Example using Superposition 
Method (cont’d)

Substituting Eq. 37 into Eq.  38, gives

Solving for RB, the result is
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Statically Indeterminate 
Transversely Loaded Beams
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Illustrative Example using Superposition 
Method (cont’d)

From the free-body diagram for entire 
beam (Figure 40), the equations of 
equilibrium are used to find the rest of the 
reactions.
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Statically Indeterminate 
Transversely Loaded Beams
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Illustrative Example using Superposition 
Method (cont’d)
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Figure 40.  Free-body Diagram for the Entire Beam 

Statically Indeterminate 
Transversely Loaded Beams
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Illustrative Example using Superposition 
Method (cont’d)
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Statically Indeterminate 
Transversely Loaded Beams
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Illustrative Example using Superposition 
Method (cont’d)

From Eqs.40, 42, and 43,

Which confirms the results found by using the 
integration method. 
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Statically Indeterminate 
Transversely Loaded Beams
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Example 12
A beam is loaded and supported as shown 
in the figure. Determine (a) the reaction at 
supports A and B in terms of w and L, and 
(b) the deflection at the left end of the 
distributed load in terms of w, L, E, and I.
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Statically Indeterminate 
Transversely Loaded Beams
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Example 12 (cont’d)
w
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Figure 41 

(a) (b) (c)

The portion AC in Figs. 41a and B is a straight line.

Statically Indeterminate 
Transversely Loaded Beams
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Example 12 (cont’d)
Note that the portion AC of the beam in 
Figs. 41a and 41b is a straight line, 
therefore
(a) Using the solution listed in Table 1a  

with P = 2wL
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Statically Indeterminate 
Transversely Loaded Beams
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Slopes and Deflection Tables Table 1a

Statically Indeterminate 
Transversely Loaded Beams
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Example 12 (cont’d)
From which (Eq. 44),

Equilibrium equations give
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Statically Indeterminate 
Transversely Loaded Beams
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Example 12 (cont’d)

(b) Deflection at left end of distributed load (at C):
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Statically Indeterminate 
Transversely Loaded Beams
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Slopes and Deflection Tables Table 1b

Statically Indeterminate 
Transversely Loaded Beams


