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m Method of Superposition

—When a beam is subjected to several loads
(see Fig. 18) at various positions along the
beam, the problem of determining the
slope and the deflection usually becomes
quite involved and tedious.

— This is true regardless of the method used.

— However, many complex loading
conditions are merely combinations of
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m Method of Superposition
relatively simple loading conditions

Figure 18 (a) (b)
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m Method of Superposition

— Assumptions:

» The beam behaves elastically for the combined
loading.

» The beam also behaves elastically for the each
of the individual loads.

« Small deflection theory.
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m Method of Superposition

If it is assumed that the beam behaves
elastically for the combined loading, as well
as for the individual loads, the resulting final
deflection of the loaded beam is simply the
sum of the deflections caused by each of the
individual loads.
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m Method of Superposition

— This sum may be an algebraic one (Figure
19) or it might be a vector sum as shown in
Figure 20, the type depending on whether
or not the individual deflection lie in the
same plane.

— The superposition method can illustrated
by various practical examples.
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i~ Deflection by Superposition
Figure 19
m Method of Superposition p
yw
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" Method of Superposition

150 kN P = 150 kN
20 kN/m

ENES 220 ©Assakkaf

= Un

2m w = 20 kN/m

Principle of Superposition:

* Deformations of beams subjected to * Procedure is facilitated by tables of
combinations of loadings may be solutions for common types of
obtained as the linear combination of loadings and supports.

the deformations from the individual
loadings
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m Method of Superposition

Figure 20
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m lllustrative Example for the Use of
Superposition
— Consider the beam shown in Fig. 21, with
a flexural rigidity of E/ = 100 MN-m.

Y 150 kKN

Figure 21
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m lllustrative Example for the Use of
Superposition
— If we are interested on finding the slope
and the deflection, say of point D, then we

can use the superposition method to do
that as illustrated in the following slides.

— First we find the slope and deflection due
the effect of each load, i.e., w, P, etc.
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m lllustrative Example for the Use of

Superposition

— The resulting final slope and deflection of
point D of the loaded beam is simply the
sum of the slopes and deflections caused
by each of the individual loads as shown in
Figure 22.

— We need to find both the slope and
deflection caused by the concentrated load
(120 kN) and distributed load (20 kN/m)
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m lllustrative Example for the Use of
Superposition

20 kN/m

Figure 22. Original Loading is Broken into Two Individual Loads
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m |llustrative Example for the Use of
150 kN Superpositlonlso kN

20 kN/m

20 kN/m

D—due to P + 5D7duc tow
Figure 23. Original Deflection is Broken into Two Individual Deflections
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m |llustrative Example for the Use of
Superposition
— Slope and Deflection caused by P

By either the direct integration or the singularity
functions method, it can be seen that the slope
and deflection (due to P) of point D of this

particular loaded beam are given, respectively,
as

pPL’ 3pr
(QD )P == and (yD )P =
32E1 256E1
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m lllustrative Example for the Use of
Superposition
— Slope and Deflection caused by P
» Therefore,
6,), - P> 150x10°(8)
PIPT U 32EI T 32(100%x10°)

3 3 3
(), = 3PL 3(150%10 )(86) ~o00om  (25b)
256EI  256(100x10%)

=-0.003 rad (25a)
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m lllustrative Example for the Use of
Superposition
— Slope and Deflection caused by w

* By either the direct integration or the singularity
functions method, it can be seen that the slope
and deflection (due to w) of point D of this
particular loaded beam are given, respectively,

as 26
0 4 +6Lx* -’ a
w 4 3 3 (2 6b)
=—AN- 2Lx" —L
(y D )P 2AE] ( X +2ilx X )
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m lllustrative Example for the Use of
Superposition
— Slope and Deflection caused by w
* With w =20 kN/m, x=2 m, and L = 8 m, thus

20x10°

0) = (—4x*+6Lx*—1*)= ~356)=—-0.00293 rad
@), 24EI( X 6L L) 241100x10°i( ) &

20x10°
(yD)P

— w _ 3 J—
= urr (-x*+2Lx° - I'x)= m( 912)=-0.0076 m




o
S

“» LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 - 9.8) Slide No. 18
- ENES 220 ©Assakkaf

o Deflection by Superposition

m lllustrative Example for the Use of
Superposition
— Combining the slopes and deflections

produced by the concentrated (P) and
distributed (w) loads, the results are

60,=,),+(8,), =-0.003-0.00293 = —0.00593 rad

vp =), + (), ==0.009-0.0076 = 0.0166 m = 16.6 mm
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m |llustrative Example for the Use of
Superposition

150 kN

==

A -
L

150 kN

20 kN/m

D} 0, = (,90 ),) + (‘91) )W and y, = ( v, ),; + ( v, )w @,).

Figure 24. Total Slope and Deflection of Point D
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m General Procedure of Superposition

— It is evident from the last results that the
slope or deflection of a beam is the sum of
the slopes or deflections produced by the
individual loads.

— Once the slopes or deflections produced
by a few typical individual loads have been
determined by one of the methods already
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m General Procedure of Superposition

— Presented, the superposition method
provides a means of quickly solving a wide
range of more complicated problems by
various combinations of known results.

— As more data become available, yet a
wider range of problems can be solved by
the method of superposition.
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m Slope and Deflection Tables

— To facilitate the task of practicing
engineers, most structural and mechanical
handbooks include tables giving the
deflections and slopes of beams for
various loadings and types of support.

— Such a table can be found in the textbook
(Table B19) and provided herein in the
next few viewgraphs (Table 1 and 2).
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m Slopes and Deflection Tables

Table 1a
Load and Support Slope at End Maximum Deflection
Case - (Length L) (+4) (+ upward)
3
ny  x P = _PL2 i
1 ) gﬁ\ [’ 2E] Ymax 35
[) _— Ymax
It 2_0 atx =1L atx =1
Y w wi3 wL*
2 (o 0=~ max= "5kl
0 Y
(] atx =1 atx =1
7 L3 wlt
w} __w oo
P E b= "2 T = 308
0 Fma -
§ atx =1L atx=1
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m Slopes and Deflection Tables

Table 1b
Load and Support Slope at End Maximum Deflection
Case v (Length L) (+.4) (+ upward)
P ML ML?
w . o ks, = 4o
4 ém' : ?Mo T Yme = TR
___4_41}(
b * atx =1L atx =1L
’ g o PUL = 8) __ PH(IE-ptp
5 VST erEr o = g
atx =190 atx = V(L2-b%)/3
0, = +Pa{LZ ) o _Pb(3L2 = 4b)
o 2= T 6LE Foemer 48EI
a b>a atx =L
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m Slopes and Deflection Tables

Table 1c
Load and Support Slope at End Maximum Deflection
Case (Length L) (+A) (+ upward)
. ) R
PR VT 6Bl
PI2
14 o atx=0 Viowx = e
b pL? atx= L2
0 6, = +——
b 16E1
atx =1L
w3
'l O = =%amm
— _ Swit
nr= TV
o _+wL3 atx = L/2
oax 2T T 24El
atx=1L
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m Slopes and Deflection Tables
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Table 1d

Load and Support Slope at End Maximum Deflection
Case (Length L) +A4) (+ upward)
8 6 = ML oML
4 oM 'Y TeEl Yo = TG 3R
% F
g " atx =0 atx = L/V3
128 8
0 g = + ML _ M2
Imex Y Yoemer = T6EI
atx =1L
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m Slopes and Deflection Tables
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Table 2a

and siopéBeer and Johnston 1992)

Maximum )
Beam and Loading Elastic Curve Deflection Slope at End Equation of Elastic Curve
v L————i
o =il e y= L3~ aLaey
o | BEI 2EI [
- _wlt - WL y = — = (z* — 4Lz + 6LAY)
. 8EI 6EI 24E1
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m Slopes and Deflection Tables

Table 2b

Maximum
Beam and Loading Elastic Curve Deflection Siope at End Equation of Elastic Curve
3
’ N ML? ML M
x _ ML - M 2
R AR ) O‘W‘M = ST T y 2ET ~
-
. A
_;_L_,LP Y] L For x < 4L:
x PL? L, PL? __P s _ ar2
w0 V 48EI = T6ET ¥ = gy (47 — %)
L - 1L4 iy

.t

i

R

o
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m Slopes and Deflection Tables

Table 2¢

(Beer and Johnston 1992)Appendix D. Beam Deflections and Slopes

Maximum )
Beam and Loading Elastic Curve Detfiection Slope at End Equation of Elastic Curve
5
i [ WS J— Fora>h: For x < a:
b
b Pb{L? — b¥)%/2 Pb(L? — b?, Pb
‘ l s |- b<9\/§EIL) by = - (6EIL Lly= AL
A=) B A ”
- i S TN 1% — b2 4. = Pa{l? — a?% F o _ _ Pa%?
s, — ata, = [~ B =t "gEIL orx=a Y= - Gpm
Y L
x - BwL* wL? W 4 _ 3
o Sy BTV Y= —goT (x4 ~ 2Lx% + L%)
A+l Yom
o— _wre oM Sl Mgy
s . | 9VIE ST y T ) ;
4 ML
L 0y = — 357 ]
y \/5"| Yinax 3EI : B
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m Use of Slopes and Deflection Tables

— Notice that the slope and deflection of the
beam of Figures 21 and 24 (repeated here)
of the illustrative example could have been
determined from the table (Table 1)

=

Y 150 kN

Figure 21
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m Use of Slopes and Deflection Tables

/

150 kN

20 kN/m

D> 0, = ('90 ) » T (‘91) )w and y, ()/ D) ()/ D )w ©,),

D
Figure 24. Total Slope and Deflection of Point D
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m Use of Slopes and Deflection Tables

— Indeed, given the information given under
cases 5 and 6 of Tables 2c, the slope and
deflection for any value x < L/4 could have
been expressed analytically.

— Taking the derivative of the expression
obtained in this way, would have yielded
the slope of the beam over the same
interval.
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m Use of Slopes and Deflection Tables

— The slope at both ends of the beam may
be obtained by simply adding the
corresponding values given in the table.

— However, the maximum deflection of the
beam of Fig. 21 cannot be obtained by
adding the maximum deflections of cases 5
and 6 (Table 2c), since these deflections
occur at different points of the beam.
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m Use of Slopes and Deflection Tables

— Applying case 5 on the illustrative example
to find both the slope and deflection of
point D of the beam (Fig. 21), yields

() = [ (2 —ﬂxFMF (8 -6”)2)]=—-0.009m

150x10°(6)

O == <o B (22 -p7)]= 00x10°18) [3(2)? - (82 = 6)|]=-0.003 rad

— These values confirm the results obtained
using Eq. 25 of the integration method.
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m Example 6

Use the method of superposition to find the
slope and deflection at point B of the
beam.
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m Example 6 (cont’d)

The given loading can be obtained by
superposing the loadings shown in the
following “picture equation” (Fig. 25). The
beam AB is, of course, the same in each
part of the figure.

For each the loadings 1 and 2, the slope
and deflection at B can be determined by
using the Tables 1 or 2. (Textbook Table
B-19)

=
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m Example 6 (cont’d)

/

Figure 25

Loading 1

Loading 2
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" Problem 6 (cont’d) T

C{ ; I ; ‘ ; } For the beam and loading shown,
| determine the slope and deflection at
— L2 ——1r2 ‘~| point B.

URity,

SOLUTION:

Superpose the deformations due to Loading I and Loading II as shown.

Loading 1 Loading 11
w A 1 A
4 T, - D, 4 3 —
b L2t L2 ! L b—rp—s—1r

-"’l .’f| U| B __riay),
=1 )
. uln
X — X ] L 1
I E g —
A L A Yu't A
1 I
B Loy B Ly
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UhiL,

m Example 6 (cont’d)

Loading 1:
» From Table 1a or Table 2a (also Table B-19 of
the textbook),
wil wL*
(93)1 = _E and (yB )1 :_SE (273)

Loading 2:
* From the same tables:

w(L/2)t  wr
S8EI  128EI

3 3
0), =+ M2 oL ()=

6E1 48E1 (27b)
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Figure 26

Loading 2 In portion CB, the bending moment for loading 2

is zero, thus the elastic curve is a straight line:

(68 )z = (‘9(,‘ )z =+ wL (28)

48E1

( B )z = (yc )2 +§(0(3 )2 (29)

K
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m Example 6 (cont’d)

Total slope and deflection:
* Slope of Point B:
wl  wl’ Twl’
0,=0,),+0,),=- =—
»=(0,),+6,) GEI  48EI  48EI

» Deflection of Point B:

L wl' L wL’ TwL'
_ =6.), = — =
(J’B)z (yc)2+2( C)z 128E]+2(48Elj +384E[

}@ LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 — 9.8) Slide No. 41

C8EI 384EI  384EI

Lt 7wl 41wL’
=(ys) +(vp)y = ot >
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m Example 7
Use the method of superposition,
determine the deflection at the free end of
the cantilever beam shown in Fig. 27 in
terms of w, L, E, and 1.
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m Example 7 (cont’d)

f “* LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 — 9.8)

Figure 28

Loading 2
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m Example 7 (cont’d)

Using the solutions listed in Table 1a.
Cases 1 and 2 (Textbook Table B-19) with
P=wL

Oc = (§C)1 +(5c)z = (§C)1 +(5B)2 +L(HB )2
_ PQ2L)’ ol wL* 7 wl’
- 3EI 8EI |\ 6EI

~ wL(2L) { wi* L(wﬁ ﬂ_ 71wl

3EI 8EI 6EI || 24EI
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m Example 8

For the simply supported beam of Fig. 29,
use the method of superposition to
determine the total deflection at point C in
terms of P, L, E, and 1.

Figure 29
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m Example 8 (cont’d)

Loading 1 Loading 2

—

4 L/ ‘ ANZN ‘ ‘ LA ‘

L < L - < L -l
From Table 1c (Text B-19) From Table 1b (Text B-19)

Case 6 Case 5
@ /2 a=3L/4,b=L/4
p— PL3 ycemer = _M
ycenter - 48E] 48EI
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m Example 8 (cont’d)

Table 1b
Load and Support Slope at End Maximum Deflection
Case v (Length L) (+.4) (+ upward)
P ML ML?
w . o ks, = 4o
4 ém' : ?Mo T Yme = TR
_LA“* atx=L atx=1L
’ g o PUL = 8) __ PH(IE-ptp
3 T Poax = =TTy
atx =190 atx = V(L2-5%)/3
) )
Yrmax 6, =+ 6LEI Yeenter = ASE]

not max

L b>a atx =L
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m Example 8 (cont'd) Table 1c

Load and Support Slope at End Maximum Deflection
(Length L) (+.A4) (-+ upward)

pPL?
16E1

91=_

atx=0

) o B
2 16E1
atx = L

wL?
0= ~%um

SwL*
384ET
wiL? atx = L/2

Inas =
atx=1L

atx =0 Ymax =

& LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 — 9.8) Slide No. 49
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m Example 8 (cont'd)
Deflection due to Loading 1:

P’
(y C )1 - M

Deflection due to Loading 2:
o) _ PO -4v)_ P(L/4)3C -4(L/4))_ 11PL

48E1 48E] T68E1

Therefore, total deflection of point C
PL’ 1P _ 9PL
48E] T68EI  256EI

Ye :(yc)1 +(yc)2 ==
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m Example 9

Using the method of superposition, find the
deflection at a point midway between the
supports of the beam shown in the figure in
terms of w, L, E, and 1.

y WL/ 4

| Figure 31
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m Example 9 (cont’d)

The deflection at a point midway between
the supports can be determined by
considering the beam shown in Fig. 32.
Note that since the shear forces Vzand V,
do not contribute to the deflection at any

point in span BC, the mid-span deflection
can be expressed as

Omia =0, +0y,  (29)
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m Example 9 (cont’d)

y Figure 32 wL/4

<~ LR —< L S|« 3L/4 ——
ma wL
y VH = L V( = T
MB — WL(L \
2\ 4 X
, - /
:i wL (3L 3wL
2 ‘ | Mo=22 2=
- L > 4 \ 4 16

Slide No. 53
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m Example 9 (cont’d)

Using the solutions listed in Table 1, Table
2, or Table B-19 of the textbook with

Mg = wlL?/8 and M, = 3wL?/16

2 2 ) )
g, L) el

_ S5wL?
256E1

—_—
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Deflection bz Sugegosition

’
m Example 9 (cont'd) Table 1d
Load and Support Slope at End Maximum Deflection
Case 3 (Length L) +A4) (+ upward)
g - ‘ g = ML oML
4 oM 'Y TeEl Yoo = TSR
g7 :
g " atx =0
o 8
0 ML
= =
Imex =43y Yoener = TY6EI
atx =1L
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Deflection bz Sugegosition

m Example 10

For the beam in Fig. 33, determine the
flexural stress at point A and the deflection
of the left-hand end.

6 in

Figure 33
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Deflection bz Sugegosition

m Example 10 (cont’d)

The stress at point A is a combination of
compressive flexural stress due to the
concentrated load and a tensile flexural
stress due to the distributed load, hence,

M) M) [s(4)80 /23) 600(80)2)

I I, 46) /12 6(4) /12

Y

=2,666.7 +3000.0 = —333.3 psi (compression)
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Deflection bz Sugegosition

Figure 34
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=
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m Example 10 (cont'd)

The deflection at the end of a cantilever
beam with uniformly distributed load is
given by (see Table 1a, case 2)

wL! 5(4)(80)°

SEL,  8(2.4x10°)[a(6) /12]

Vo = =0.59261n
and with concentrated load at the end is
given by (see Table 1a, case 1)

Pr 600(80)

3E] 3(2 4x106)[6 /12]

=1.33331in

Zy =
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Deflection bz Sugegosmon

)
m Example 10 (cont'd) Table 1a
Load and Support Slope at End Maximum Deflection
Case 3 (Length L) (+4) (+ upward)
ny  x P = _PL2 = e
1 ) gﬁ\ [’ 2E] Ymax 35
[) _— Ymax
It 2_0 atx =1L atx =1
Y w wi3 wL*
2| e—— 0=-2 Vo=
0 Yma
(] . atx =1 atx =1
wi _wk - wl4
P E b= "2 T = 308
0 Ymax -
§ atx =1L atx=1
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Deﬂectlon bz Sugegosmon

m Example 10 (cont'd)

Superimposing the results for the
deflections due to the concentrated and
distributed loads, the deflection at the free
end is the vector sum:

5=yl +22 =/(0.5626) +(1.3333)

=1.4471in
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Statlcallz Indeterminate

Transversely Loaded Beams

m The Superposition Method

— The concept of the superposition, which
states that a slope or deflection due to
several loads is the algebraic sum of the
slopes or deflections to each individual
loads acting alone can be applied to
statically indeterminate beams.

— The superposition can provide the
additional equations needed in the
analysis.
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Staticallz Indeterminate

Transversely Loaded Beams

T S

Eiicy

m The Superposition Method
— Procedure

» Selected restraints are removed and replaced by
unknown loads, e.g., forces and couples.

» Sketching of the deformation (deflection)
diagrams corresponding to individual loads (both
known and unknown).

» Adding up algebraically the individual of
components of slopes or deflections to produce
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Staticallz Indeterminate

Transversely Loaded Beams

"

m lllustrative Example using Superposition

Determine the reactions at the supports for
the simply supported cantilever beam
(Fig.35) presented earlier for the
integration method.




:g‘"".t% LECTURE 19. BEAMS: DEFORMATION BY SUPERPOSITION (9.7 — 9.8) Slide No. 64

Staticallz Indeterminate

Transversely Loaded Beams

m |llustrative Example using Superposition
Method (cont'd)

— First consider the reaction at B as
redundant and release the beam from the
support (remove restraint).

— The reaction Ry is now considered as an
unknown load (see Fig. 39) and will be
determined from the condition that the
deflection at B must be zero.
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Transversely Loaded Beams

m |llustrative Example using Superposition
Method (cont’'d)

Figure 39. Original Loading is Broken into Two Loads
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Application of Superposition to Statically
Indeterminate Beams

* Method of superposition may be * Determine the beam deformation
applied to determine the reactions at without the redundant support.
the supports of statically indeterminate
beams. * Treat the redundant reaction as an

unknown load which, together with

* Designate one of the reactions as the other loads, must produce
redundant and eliminate or modify deformations compatible with the
the support. original supports.
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Transversely Loaded Beams

m |llustrative Example using Superposition
Method (cont'd)

In reference to Table 1a cases 1 and 2
(Table B19 of Textbook):

R,L wL'
and =— 37
3E] (y B )w SE] (37)

(yB)RB =+

The deflection at B in the original structural
configuration must equal to zero, that is

Vs =g ), +(5), =0 (38)
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Transversely Loaded Beams

m Slopes and Deflection Tables | Table 1a

Load and Support Slope at End Maximum Deflection
Case P (Length L) (+.4) (+ upward)
3
ny = P = _.1.)_43 = e
1 ] 2@\ 6 2F] Ymax 3E]
N Ymax
v ;_9 atx =1L atx=1

wd W wl? wL?

2 e LT

2|/ ee— 0= - Vo=
0 — i}’max

[ atx =1L atx=1

3 w_E 5 9= wi? i . = - wid

% = om0 Tmex = T 308]
0 Ymax .
8 atx =1L atx =L
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Staticallz Indeterminate

Transversely Loaded Beams

m |llustrative Example using Superposition
Method (cont’'d)

Substituting Eq. 37 into Eq. 38, gives
R, wL'

3EI  SEI
Solving for Rg, the result is

+

(39)

R, = +§wL (40)
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m lllustrative Example using Superposition
Method (cont'd)

From the free-body diagram for entire
beam (Figure 40), the equations of
equilibrium are used to find the rest of the
reactions.

+T > F,=0;R, +R,—wL=0

“R, =wL—-R, (41)

v
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Wy -
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Transversely Loaded Beams
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m |llustrative Example using Superposition
Method (cont’'d)

Figure 40. Free-body Diagram for the Entire Beam
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Transversely Loaded Beams

m lllustrative Example using Superposition
Method (cont'd)

ButR, = % wL from Eq. 40, therefore

RA:wL—ngzng (42)

2
2_(3 1
M, =-R,L+—wL =| —wL |L-—wL
8 2
1
=—wl’ (43)
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Staticallz Indeterminate

Transversely Loaded Beams

m |llustrative Example using Superposition
Method (cont’'d)
From EQs.40, 42, and 43,

1 3
MA:§WL2 RBzng

Which confirms the results found by using the
integration method.
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Transversely Loaded Beams

m Example 12

A beam is loaded and supported as shown
in the figure. Determine (a) the reaction at
supports A and B in terms of wand L, and
(b) the deflection at the left end of the
distributed load in terms of w, L, E, and 1.

,;\
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o Statlcallz Indeterminate

Transversely Loaded Beams

= Example 12 (cont'd) Figure 41

2wL

The portion AC in Figs. 41a and B is a straight line.
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Transversely Loaded Beams

m Example 12 (cont’d)

Note that the portion AC of the beam in
Figs. 41a and 41b is a straight line,

therefore
(a) Using the solution listed in Table 1a
with P = 2wL
0,="0¢, 0., (L )+ Ocp +0cp (L)+ 5ARA =0 (44)
_w22)' w(2L) (L) 2wL(2L) 2wL(2L) (L)+ R,(L) _
8EI  6EI 3EI 2EI 3EI
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Statlcallz Indeterminate
Transversely Loaded Beams

m Slopes and Deflection Tables | Table 1a

Load and Support Slope at End Maximum Deflection
Case 3 (Length L) (+4) (+ upward)
2 PL3
ny  x P = _PL o
1 ) gﬁ\ [’ 2E] Ymax 35
[) _— Ymax
It 2_0 atx =1L atx =1
Y w wi3 wL*
2 (o 0=~ max= "5kl
0 Yrmax
(] atx =1 atx =1
7 L3 wlt
WE% - -
P E b= "2 T = 308
§ atx =1L atx=1
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Staticallz Indeterminate

Transversely Loaded Beams

m Example 12 (cont’d)

2wl From which (Eq. 44),
38wL
R, =+—"—

27

Equilibrium equations give

Ra Ry N F =0;R,~P-w(2L)+ R, =0
FBD
§§E£—2WL—2WL+RB=O
3EI
.:RB=70WL
27
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= Statically Indeterminate

Transversely Loaded Beams
m Example 12 (cont’d)

+ > My=0;R,(3L)-P(2L)-w(2L)L)+ M, =0

%(ﬂ)— 4wl? = 2w + M, =0

2wL

l6wl?
9

) Defleg:éric}n at left end of distributed load (at C):
R.=R, =222
C A 27

My =

Ry
(

38wL 38wl?
MC:RA(L):TV;(L): 21’\;

6c=6 e T Seu .t Sep+6¢,

(38wL/27)2L) | (swr/27)2L) 2wL(2L) w(2L)' _ 62wL’
3EI 2E1 3EI 8EI 81EI
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m Slopes and Deflection Tables | tapie 1p
Load and Support Slope at End Maximum Deflection
Case v (Length L) (+.4) (+ upward)
2
Y B = M‘_ = ML
4 %:W,;mzaﬂle 6=+ I Yomax = + T
"LAW atx=1 atx =1L
’ ) _ _ PbR-p2p
5 0= ="zl o = g
atx =190 atx = V(L2-b%)/3
_ +Pa{LZ ) _ _PpI2 - 41
o b= rmr Foemer = 48EI
a b>a atx =L




