Shear on the Horizontal Face of a Beam Element

- Consider prismatic beam
- For equilibrium of beam element
 \[\sum F_x = 0 = \Delta H + \int (\sigma_D - \sigma) \, dA \]
 \[\Delta H = \frac{M_D - M_C}{l} \int y \, dA \]
- Note,
 \[Q = \int y \, dA \]
 \[M_D - M_C = \frac{dM}{dx} \Delta x = V \Delta x \]
- Substituting,
 \[\Delta H = \frac{VQ}{l} \Delta x \]
 \[q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I} = \text{shear flow} \]
Shear on the Horizontal Face of a Beam Element

- Shear flow,
 \[q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I} \] = shear flow

- where
 \[Q = \int y \, dA \] = first moment of area above \(y_1 \)
 \[I = \int y^2 \, dA \] = second moment of full cross section

- Same result found for lower area
 \[q' = \frac{\Delta H'}{\Delta x} = \frac{VQ'}{I'} = -q' \]
 \[Q + Q' = 0 \] = first moment with respect to neutral axis
 \[\Delta H' = -\Delta H \]

Shearing Stress in Beams

- **Example 16**
 The transverse shear \(V \) at a certain section of a timber beam is 600 lb. If the beam has the cross section shown in the figure, determine (a) the vertical shearing stress 3 in. below the top of the beam, and (b) the maximum vertical stress on the cross section.
Shearing Stress in Beams

- Example 16 (cont’d)

From symmetry, the neutral axis is located 6 in. from either the top or bottom edge.

\[I = \frac{8(12)^3}{12} - \frac{4(8)^3}{12} = 981.3 \text{ in}^4 \]

\[Q_v = 8(2)(5) + 2[2(2)(3.5)] = 94.0 \text{ in}^3 \]

\[Q_{NAd} = 8(2)(5) + 2[2(2)(4)] = 112.0 \text{ in}^3 \]

(a) \[\tau_{Qv} = \frac{VQ_v}{It} = \frac{6000(94)}{981.3(4)} = 143.7 \text{ psi} \]

(b) \[\tau_{\text{max}} = \frac{VQ_{\text{max}}}{It} = \frac{6000(112)}{981.3(4)} = 171.2 \text{ psi} \]
Longitudinal Shear on a Beam Element of Arbitrary Shape

- Consider a box beam obtained by nailing together four planks as shown in Fig. 1.
- The shear per unit length (Shear flow) q on a horizontal surfaces along which the planks are joined is given by

$$q = \frac{VQ}{I} = \text{shear flow}$$ \hspace{1cm} (1)
Longitudinal Shear on a Beam
Element of Arbitrary Shape

- But could q be determined if the planks had been joined along vertical surfaces, as shown in Fig. 1b?

- Previously, we had examined the distribution of the vertical components τ_{xy} of the stresses on a transverse section of a W-beam or an S-beam as shown in the following viewgraph.

Shearing Stresses τ_{xy} in Common Types of Beams

- For a narrow rectangular beam,

 \[\tau_{xy} = \frac{VQ}{lb} = \frac{3V}{2A} \left(1 - \frac{y^2}{c^2} \right) \]

 \[\tau_{\text{max}} = \frac{3V}{2A} \]

- For American Standard (S-beam) and wide-flange (W-beam) beams

 \[\tau_{\text{ave}} = \frac{VQ}{It} \]

 \[\tau_{\text{max}} = \frac{V}{A_{\text{web}}} \]
Longitudinal Shear on A Beam Element of Arbitrary Shape

- But what about the horizontal component τ_{xz} of the stresses in the flanges?

- To answer these questions, the procedure developed earlier must be extended for the determination of the shear per unit length q so that it will apply to the cases just described.

Longitudinal Shear on a Beam Element of Arbitrary Shape

- We have examined the distribution of the vertical components τ_{yy} on a transverse section of a beam. We now wish to consider the horizontal components τ_{xz} of the stresses.

- Consider prismatic beam with an element defined by the curved surface CDD'C'.

$$\sum F_x = 0 = \Delta H + \int_{a}^{b} (\sigma_D - \sigma_C) dA$$

- Except for the differences in integration areas, this is the same result obtained before which led to

$$\Delta H = \frac{V Q}{I} \Delta x \quad q = \frac{\Delta H}{\Delta x} = \frac{V Q}{I}$$
Shearing Stress in Beams

- **Example 17**

A square box beam is constructed from four planks as shown. Knowing that the spacing between nails is 1.75 in. and the beam is subjected to a vertical shear of magnitude \(V = 600 \text{ lb} \), determine the shearing force in each nail.

SOLUTION:

- Determine the shear force per unit length along each edge of the upper plank.

- Based on the spacing between nails, determine the shear force in each nail.

Example 17 (cont’d)

For the upper plank,

\[
Q = A' y = (0.75\text{ in.})(3\text{ in.})(1.875\text{ in.}) = 4.22\text{ in}^3
\]

For the overall beam cross-section,

\[
I = \frac{1}{12}(4.5\text{ in.})^3 - \frac{1}{12}(3\text{ in.})^3 = 27.42\text{ in}^4
\]

SOLUTION:

- Determine the shear force per unit length along each edge of the upper plank.

\[
q = \frac{VQ}{T} = \left(\frac{600\text{ lb}}{27.42\text{ in}^4}\right) = 21.93\text{ lb/in}
\]

\[
f = \frac{q}{2} = \frac{21.93\text{ lb/in}}{2} = 10.965\text{ lb/in}
\]

- Based on the spacing between nails, determine the shear force in each nail.

\[
F = f t = \left(10.965\text{ lb/in}\right)(1.75\text{ in.}) = 19.32\text{ lb}
\]

\[
F = 80.8\text{ lb}
\]
Shearing Stress in Thin-Walled Members

- It was noted earlier that Eq. 1 can be used to determine the shear flow in an arbitrary shape of a beam cross section.
- This equation will be used in this section to calculate both the shear flow and the average shearing stress in thin-walled members such as flanges of wide-flange beams (Fig. 2) and box beams or the walls of structural tubes.
Shearing Stress in Thin-Walled Members

- Consider a segment of a wide-flange beam subjected to the vertical shear V.
- The longitudinal shear force on the element is

$$\Delta H = \frac{VQ}{I} \Delta x \quad (2)$$

Shearing Stress in Thin-Walled Members

- Figure 3
Shearing Stress in Thin-Walled Members

- The corresponding shear stress is

\[\tau_{zx} = \tau_{xz} \approx \frac{\Delta H}{t \Delta x} = \frac{VQ}{It} \] \hspace{1cm} (3)

- Previously found a similar expression for the shearing stress in the web

\[\tau_{xy} = \frac{VQ}{It} \] \hspace{1cm} (4)

Shearing Stress in Thin-Walled Members

- The variation of shear flow across the section depends only on the variation of the first moment.

\[q = \frac{VQ}{T} \]

- For a box beam, \(q \) grows smoothly from zero at \(A \) to a maximum at \(C \) and \(C' \) and then decreases back to zero at \(E \).

- The sense of \(q \) in the horizontal portions of the section may be deduced from the sense in the vertical portions or the sense of the shear \(V \).
Shearing Stress in Thin-Walled Members

- For a wide-flange beam, the shear flow increases symmetrically from zero at \(A \) and \(A' \), reaches a maximum at \(C \) and the decreases to zero at \(E \) and \(E' \).

- The continuity of the variation in \(q \) and the merging of \(q \) from section branches suggests an analogy to fluid flow.

Example 18

Knowing that the vertical shear is 50 kips in a W10 × 68 rolled-steel beam, determine the horizontal shearing stress in the top flange at the point \(a \).
Shearing Stress in Thin-Walled Members

- **Example 18 (cont'd)**

SOLUTION:

- For the shaded area,
 \[Q = (4.31\text{in})(0.770\text{in})(4.815\text{in}) \]
 \[= 15.98\text{in}^3 \]

- The shear stress at \(a \),
 \[\tau = \frac{VQ}{It} = \frac{(50\text{kip})(15.98\text{in}^3)}{(394\text{in}^4)(0.770\text{in})} \]
 \[\tau = 2.65\text{kpsi} \]