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Second Moments of Areas

Moment of Inertia
– There are many important topics in 

engineering practice that require evaluation 
of an integral of the second moment of 
area or moment of inertia of the type

∫ dAx  2 (21)
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Second Moments of Areas

Moment of Inertia
– The integral of Eq. 21 is referred to as the 

moment of inertia for an area.
– Methods used to determine the area 

moment of inertia will be discussed briefly 
in this chapter.

– Full treatment of this important topic can be 
found in almost every standard “statics” 
book. 

LECTURE 12. BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) (5.1 – 5.2) Slide No. 3
ENES 220 ©Assakkaf

Second Moments of Areas

Moment of Inertia
– Consider an area A located in the xy plane 

as shown in the figure.
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Second Moments of Areas

Moment of Inertia
– Also consider the element of area dA of 

coordinates x and y.
– The second moment, or moment of inertia 

of the area A (see Fig. 10) with respect to 
the x axis, and the second moment, or 
moment of inertia with respect to the y axis 
are defined, respectively, as provided in 
the next viewgraph:
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Second Moments of Areas

Moment of Inertia
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Where
Ix = moment of inertia with respect to x axis
Iy = moment of inertia with respect to y axis
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Second Moments of Areas

Moment of Inertia
– The quantities Ix and Iy are referred to as 

rectangular moments of inertia, since they 
are computed from the rectangular 
coordinates of the element dA.

– While each integral is basically a double 
integral, it is possible in many applications 
to select elements of area dA in the shape 
of thin horizontal or vertical strips.
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Second Moments of Areas

Polar Moment of Inertia
– The second moment, or polar moment of 

inertia of an area with respect to an axis 
perpendicular to the plane of the area is 
denoted by the symbol J.

– For example, the second moment of area 
A shown in Fig. 11 with respect to a z-axis 
that is perpendicular to the plane of the 
area at O of the xy-coordinate system is:
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Second Moments of Areas

Polar Moment of 
Inertia
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Second Moments of Areas

Polar Moment of Inertia
The second moment or polar moment of 
area A with respect to z axis is given by
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Second Moments of Areas

Polar Moment of Inertia
– The quantity Jz is known as the polar 

second moment of the area A and was 
used in Chapter 7 in the calculation of the 
stress in circular shafts transmitting 
torques.

– For circular shaft of radius r,
4

2
rJ z

π
= (25)
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Second Moments of Areas

Radius of Gyration of an Area
– The radius of gyration of planar area has 

units of length and is a quantity often used 
for the design of columns in structural 
mechanics.

– Provided the areas and moments of inertia 
are known, the radii of gyration are 
determined from the following formulas:
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Second Moments of Areas

Radii of Gyration of an Area
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Second Moments of Areas

Example 1
Determine the moment of inertia for the 
rectangular area shown in Fig. 11 with 
respect to (a) the centroidal xC axis, (b) the 
axis x passing through the base of the 
rectangle, and (c) the pole or zC axis 
perpendicular to the xC-yC plane and 
passing through the centroid C.
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Second Moments of Areas

Example 1 (cont’d)
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Second Moments of Areas

Example 1 (cont’d)
a) We select as an element of area a 

horizontal strip of length b and thickness 
dyC. Therefore,

Integrating from yC = -h/2 to yC = +h/2, we 
obtain 
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Second Moments of Areas

Example 1 (cont’d)
b) We select as an element of area a 

horizontal strip of length b and thickness 
dy. Therefore,

Integrating from y = 0 to yC = h, we   
obtain 
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Second Moments of Areas

Example 1 (cont’d)
c) We select as an element of area a 

vertical strip (Fig. 13) of length h and 
thickness dxC. Therefore,

Integrating from xC = -b/2 to yC = +b/2, we 
obtain
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Second Moments of Areas

Example 1 (cont’d)
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Second Moments of Areas

Example 1 (cont’d)
Using Eq. 24, the polar moment of inertia 
about the zC axis is computed as follows:
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Beam Section Properties
• The maximum normal stress due to bending,

modulussection 

inertia ofmoment section  

==

=

==

c
IS

I
S
M

I
Mc

mσ

A beam section with a larger section modulus 
will have a lower maximum stress

• Consider a rectangular beam cross section,
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h
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13
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Between two beams with the same cross 
sectional area, the beam with the greater depth 
will be more effective in resisting bending.

• Structural steel beams are designed to have a 
large section modulus.
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Second Moments of Areas

Commonly Used Second Moments of 
Plane Areas

Figure 14a
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Second Moments of Areas

Commonly Used Second Moments of 
Plane Areas

Figure 14b
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Second Moments of Areas

Commonly Used Second Moments of 
Plane Areas

Figure 14c
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Second Moments of Areas

Parallel Axis Theorem
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Second Moments of Areas

Example 2
Repeat Part (b) of Example 1 using the 
parallel-axis theorem.

From Part (a),

Using Eq. 27, 
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Examples: Elastic Flexure Formula

Example 3
– Determine the maximum flexural stress 

produced by a resisting moment Mr of 
+5000 ft⋅lb if the beam has the cross 
section shown in the figure.

6 ′′

6 ′′

2 ′′

2 ′′
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Examples: Elastic Flexure Formula

Example 3 (cont’d)
First, we need to locate the neutral axis 
from the bottom edge:
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Examples: Elastic Flexure Formula

Example 3 (cont’d)
Find the moment of inertia Ix with respect 
to the x axis using parallel axis-theorem: 
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Examples: Elastic Flexure Formula

Example 3 (cont’d)
– An alternative way for finding the moment 

of inertia Ix with respect to the x axis is as 
follows:
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Examples: Elastic Flexure Formula

Example 4
A pair of channels fastened back-to-back 
will be used as a beam to resist a bending 
moment Mr of 60 kN · m.  If the maximum 
flexural stress must not exceed 120 MPa, 
select the most economical channel 
section listed in Appendix B of the 
textbook.
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Examples: Elastic Flexure Formula

Example 4 (cont’d)
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Example 4
(cont’d)

Select
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Examples: Elastic Flexure Formula

Example 5
Determine both the 
maximum flexural 
tensile and the 
maximum flexural 
compressive 
stresses produced 
by a resisting 
moment of 100 kN·m
if the beam has the 
cross section shown 
in the figure.

250 mm

150 mm

100 mm

25 mm
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Example 5 (cont’d)
Locate the neutral axis from 
the upper edge:

250 mm

150 mm

100 mm

25 mm
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Examples: Elastic Flexure Formula
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Example 5 (cont’d)
Calculate the moment of 
inertia with respect to the x
axis:

250 mm

124.36 mm

100 mm

25 mm
•
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Examples: Elastic Flexure Formula

LECTURE 12. BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) (5.1 – 5.2) Slide No. 37
ENES 220 ©AssakkafExample 6

A cast-iron machine part is acted upon 
by a 3 kN-m couple.  Knowing E = 165 
GPa and neglecting the effects of 
fillets, determine (a) the maximum 
tensile and compressive stresses, (b) 
the radius of curvature.

SOLUTION:

• Based on the cross section geometry, 
calculate the location of the section 
centroid and moment of inertia.

( )∑ +=
∑
∑= ′

2dAII
A
AyY x

• Apply the elastic flexural formula to 
find the maximum tensile and 
compressive stresses.

I
Mc

m =σ

• Calculate the curvature

EI
M

=
ρ
1
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SOLUTION:

Based on the cross section geometry, calculate 
the location of the section centroid and 
moment of inertia.

mm 38
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• Apply the elastic flexural formula to find the 
maximum tensile and compressive stresses.

49
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• Calculate the curvature
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Shear Forces and Bending 
Moments in Beams

For any specified transverse cross 
section of a beam, the method for 
determining flexural stresses discussed 
previously is adequate if the objective is 
to determine the flexural stresses on 
that section.
However, if the maximum flexural stress 
is required in a beam subjected to a 
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Shear Forces and Bending 
Moments in Beams

loading that produces a resisting 
moment that varies with position along 
the beam, it is necessary to have a 
method for determining the maximum 
resisting moment.
Similarly, the maximum transverse 
shearing stress will occur at a section 
where the resisting shear Vr is 
maximum.



22

LECTURE 12. BEAMS: SHEAR AND MOMENT DIAGRAMS (FORMULA) (5.1 – 5.2) Slide No. 42
ENES 220 ©Assakkaf

Variation of Shear and Moment Forces
– The variation of shear (V) and moment (M) 

forces as a function of the position x of an 
arbitrary point along the beam’s axis can 
be obtained by using the method of 
section.

– Here, it is necessary to locate the 
imaginary section at an arbitrary distance x
from the end of the beam rather than at 
specified point.

Shear Forces and Bending Moments 
in Beams
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Shear Forces and Bending 
Moments in Beams

Variation of Shear and Moment Forces
– In general, the internal shear V and 

bending moment M variations will be 
discontinuous, or their slope will be 
discontinuous at points where a distributed 
load changes or where concentrated forces 
or couples are applied.
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Shear Forces and Bending 
Moments in Beams

Variation of Shear and Moment Forces

P
w

L
b

a

x1
x2

x3

Figure 14

O
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Shear Forces and Bending 
Moments in Beams

Variation of Shear and Moment Forces
– Shear and bending moment functions must 

be determined for each segment of the 
beam located between any two 
discontinuities of loading.

– For example, sections located at x1, x2, and 
x3 will have to be used to describe the 
variation of V and M throughout the length 
of the beam in Fig. 14.
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Shear Forces and Bending 
Moments in Beams

Variation of Shear and Moment Forces
– These functions will be valid only within 

regions from
O to a for x1

a to b for x2, and
b to L for x3

P
w

L
b

a

x1
x2

x3

Figure 14

O
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Shear Forces and Bending 
Moments in Beams

Sign Convention
– Before presenting a method for 

determining the shear and bending 
moment as functions of x and later plotting 
these functions (shear and moment 
diagrams), it is first necessary to establish 
a sign convention so define “positive” and 
“negative” shear force and bending 
moment acting in a beam.
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Shear Forces and Bending 
Moments in Beams

Sign Convention

M

V

M

V

V V

M M

(a) Positive Shear & Moment

(b) Positive Shear (clockwise)

(c) Positive Moment 
(concave upward)

Figure 15

L.H.F R.H.F
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Shear Forces and Bending 
Moments in Beams

Sign Convention
– With reference to Fig. 15a, on the left-hand 

face (L.H.F.) of the beam segment, the 
internal shear force V acts downward and 
the internal moment M acts 
counterclockwise.

– In accordance with Newton’s third law, an 
equal and opposite shear force and 
bending moment must act on the right-
hand face (R.H.F.) of a segment.
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Shear Forces and Bending 
Moments in Beams

Sign Convention
– Perhaps an easy way to remember this 

sign convention is to isolate a small beam 
segment and note that positive shear tends 
to rotate the segment clockwise (Fig. 15b), 
and a positive moment tends to bend the 
segment concave upward (Fig. 15c)
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Shear Forces and Bending 
Moments in Beams

Procedure for Analysis
– The following procedure provides a method 

for constructing the shear and moment 
functions (formulas) for a beam.

• Support Reactions
– Determine all the reactive couples and forces acting 

on the beam and resolve the forces into components 
acting perpendicular and parallel to the beam’s axis.

• Shear and Moment Functions (Formulas)
– Specify separate coordinates x having an origin at
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Shear Forces and Bending 
Moments in Beams

Procedure for Analysis (cont’d)
– The beam’s left end and extending to regions of the 

beam between concentrated forces and/or couples 
and where there is no discontinuity of distributed 
loading.

– Section the beam perpendicular to its axis at each 
distance x and from the free-body diagram of one of 
the segments, determine the unknowns V and M at 
the cut section as a function of x.

– On the free-body diagram, V and M should be shown 
acting in their positive sense (see Fig 15).

– V is obtained from             and M is obtained by 
summing moments about point S located at the cut 
section,

∑ = 0yF

∑ = 0SM
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Shear Forces and Bending 
Moments in Beams

Example 7
A beam is loaded and supported as shown 
in the figure.  Using the coordinate axes 
shown, write equations for shear V and 
bending moment M for any section of the 
beam in the interval 0 < x < 4 m. 

A x

y 15 kN/m 20 kN

B

4 m 2 m 2 m
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Shear Forces and Bending 
Moments in Beams

Example 7 (cont’d)
– A free-body diagram for the beam is shown 

Fig. 16.  The reactions shown on the 
diagram are determined from equilibrium 
equations as follows:

( )( ) ( )

( )
kN 30

02041550 ;0

kN 50
02206415)8( ;0  

=∴

=−−+−↑+

=∴

=−×−=+

∑

∑

B

By

A

AB

R
RF

R
RM
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Shear Forces and Bending 
Moments in Beams

Example 7 (cont’d)

A x

y 15 kN/m 20 kN

B
RA = 50 kN RB = 30 kN

Figure 16

A x

y 15 kN/m

50 kN

M

V ( )

40for       5.750

0
2

1550 ;0  

40for       1550

01550 ;0

2 <<−=∴

=−+−=+

<<−=∴

=−+−=↑+

∑

∑

xxxM

xxxMM

xxV
xVF
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x
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