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Review: Statics

Equations of Equilibrium
– Rigid Body
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Review: Statics

Equations of Equilibrium
– For a rigid body to be in equilibrium, both 

the resultant force R and a resultant 
moments (couples) C must vanish.

– These two conditions can be expressed 
mathematically in vector form as
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Review: Statics

Equations of Equilibrium
– The two conditions can also be expressed 

in scalar form as
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Review: Statics

Equilibrium in Two Dimensions
– The term “two dimensional” is used to 

describe problems in which the forces 
under consideration are contained in a 
plane (say the xy-plane)
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Review: Statics

Equilibrium in Two Dimensions
– For two-dimensional problems, since a 

force in the xy-plane has no z-component 
and produces no moments about the x- or 
y-axes, hence
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Review: Statics

Equilibrium in Two Dimensions
– In scalar form, these conditions can be 

expressed as
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Review: Statics

Cartesian Vector Representation of A 
Force
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Review: Statics

Cartesian Vector Representation of A 
Force in Two Dimensions
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Review: Vector Operations

Dot or Scalar Product
– The dot or scalar product or two 

intersecting vectors is defined as the 
product of the magnitudes of the vectors 
and the cosine of the angle between them.

A • B = AB cos θ

B

A
θ
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Review: Vector Operations

Cross or Vector Product
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C = A × B = (AB sin θ) eC

A × B = - B × A
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Review: Vector Operations

Example 3
– If A = -3.75i – 2.50j + 1.50k and

B = 32i + 44j + 64 k
determine the magnitude and direction of 
the vector C = A × B

644432
5.15.275.3
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Review: Vector Operations

Example 3 (cont’d)
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Review: Vector Operations

Example 3 (cont’d)
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Introduction

Objectives

Mechanics of Materials 
answers two questions:

Is the material strong enough?

Is the material stiff  enough?
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Introduction

Objectives
– If the material is not strong enough, your 

design will break.
– If the material isn’t stiff enough, your 

design probably won’t function the way it’s 
intended to.
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Internal Forces for Axially 
Loaded Members

Analysis of Internal Forces

Assume that F1 = 2 k, F3 = 5 k, and F4 = 8 k
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Internal Forces for Axially 
Loaded Members

Analysis of Internal Forces
– What is the internal force developed on 

plane a-a and b-b?
a

a

b

b
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Internal Forces for Axially 
Loaded Members

Analysis of Internal Forces
a

a

b

b
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Axial Loading: Normal Stress

Stress
– Stress is the intensity of internal force.
– It can also be defined as force per unit 

area, or intensity of the forces distributed 
over a given section.

Area
Force  Stress = (1)
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Axial Loading: Normal Stress

Normal Stress
F = magnitude of the force F
A = area of the cross sectional area of the   

eye bar.
Units of Stress

lb/in2 = psi
Kip/in2 = ksi = 1000 psi

1 kPa = 103 Pa = 103 N/m2

1 MPa = 106 Pa = 106 N/m2

1 GPa = 109 Pa = 109 N/m2

U.S. Customary UnitsSI System
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Shearing Stress

Illustration of Shearing Stress
P

P

P

P

ss A
P

A
V

==avgτ V
P



12

LECTURE 10. REVIEW FOR EXAM I (CH. 1, 2, AND 3) Slide No. 22
ENES 220 ©AssakkafStresses on an Inclined Plane in 

an Axially Loaded Member

Illustration

θ

P

P
F

Original Area, A
Inclined Area, An

LECTURE 10. REVIEW FOR EXAM I (CH. 1, 2, AND 3) Slide No. 23
ENES 220 ©Assakkaf

Design Loads, Working Stresses, 
and Factor of Safety (FS)

Factor of Safety
– The factor of safety (FS) can be defined as 

the ratio of the ultimate stress of the 
material to the allowable stress

stress allowable
stress ultimateFS =
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Displacement, Deformation, and 
Strain

Strain
– Two general types of strain:

• Axial (normal) Strain
• Shearing Strain

δL

θ

φ = γxy

δs

Normal Strain Shearing Strain

L
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Displacement, Deformation, and 
Strain

Average Axial Strain

True Axial Strain

L
nδε =avg

( )
dL
d

L
p nn

L

δδε =
∆
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Displacement, Deformation, and 
Strain

Average Shearing Strain

Since δs is vary small, 

sin φ = tan φ = φ, therefore,

φγ tanavg =

L
sδγ =avg

θ

φ = γxy

δs

L
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Example
A rigid steel plate A is supported by three 
rods as shown.  There is no strain in the 
rods before the load P is applied.  After P
is applied, the axial strain in rod C is 900µ
in/in. Determine
(a) The axial strain in rods B.
(b) The axial strain in rods B if there is a 0.006-in 

clearance in the connections between A and 
B before the load is applied. 

Displacement, Deformation, and 
Strain
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Displacement, Deformation, and 
Strain

Example (cont’d)

42"
72"

B C B

A
P
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Displacement, Deformation, and 
Strain

Example (cont’d)
42"

72"
B C B

A

µδε

µδε

εδδε

1400001400.0
42

006.00648.0      a)

1543001543.0
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0648.0      a)

in 0648.0)72(10900     6
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Stress-Strain-Temperature 
Relationships

General Stress-Strain Diagram

L
δε =

A
P

=σ

P

δ

LRupture
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Stress-Strain-Temperature 
Relationships

Modulus of Elasticity, E
– The initial portion of the stress-strain curve 

(diagram) is a straight line.  The equation 
for this straight line is called the modulus of 
elasticity or Young’s Modulus E

εσ E=
σ

σ=Eε

ε
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Stress-Strain-Temperature 
Relationships

Shear Modulus of Elasticity, G
– The shear modulus is similar to the 

modulus of elasticity.  However it is applied 
to shear stress-strain.

γτ G=
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Stress-Strain-Temperature 
Relationships

τ
τ=Gγ

γ

γ
τ

==G  Slope

Shear Modulus of Elasticity, G
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Stress-Strain-Temperature 
Relationships

Poisson’s Ratio
– A material loaded in one direction will 

undergo strains perpendicular to the 
direction of the load in addition to those 
parallel to the load.  The ratio of the lateral 
or perpendicular strain to the longitudinal 
or axial strain is called Poisson’s ratio.

( )GE
a

l ν
ε
ε

ε
εν +=== 12                       

long

lat
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Stress-Strain-Temperature 
Relationships

Thermal Strain
– The thermal strain due a temperature 

change of ∆T degrees is given by

TT ∆=αε
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Stress-Strain-Temperature 
Relationships

Total Strain
– The sum of the normal strain caused by 

the loads and the thermal strain is called 
the total strain, and it is given by

T
ET ∆+=+=  total ασεεε σ
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Rods: Stress Concentrations

Fig. 1. Stress distribution near circular hole in flat bar
under axial loading
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Rods: Stress Concentrations

Fig. 2. Stress distribution near fillets in flat bar under
axial loading
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Rods: Stress Concentrations
Hole

Discontinuities of cross section may result in 
high localized or concentrated stresses. ave

max
σ
σ

=K

Fig. 3
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Rods: Stress Concentrations
Fillet Fig. 4
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Rods: Stress Concentrations

To determine the maximum stress 
occurring near discontinuity in a given 
member subjected to a given axial load 
P, it is only required that the average 
stress σave = P/A be computed in the 
critical section, and the result be 
multiplied by the appropriate value of 
the stress-concentration factor K.
It is to be noted that this procedure is 
valid as long as σmax  ≤ σy
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Deformations of Members under 
Axial Loading

Uniform Member
– The deflection (deformation),δ, of the 

uniform member subjected to axial loading 
P is given by

EA
PL

=δ (1)
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Deformations of Members under 
Axial Loading

Multiple Loads/Sizes
– The deformation of of various parts of a rod 

or uniform member can be given by
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i ii

ii
n
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i AE
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11

δδ

E1 E2 E3

L1 L2 L3

(2)
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Deformations of Members under 
Axial Loading

Relative Deformation
– On the other hand, since both ends of bars 

AB move, the deformation of AB is 
measured by the difference between the 
displacements δA and δB of points A and B.

– That is by relative displacement of B with 
respect to A, or 

EA
PL

ABAB =−= δδδ /
(3)
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Statically Indeterminate 
Structures

Determinacy of Beams
– For a coplanar (two-dimensional) structure, 

there are at most three equilibrium 
equations for each part, so that if there is a 
total of n parts and r reactions, we have 

ateindetermin statically     ,3
edeterminat statically    ,3

⇒>
⇒=

nr
nr

(4)
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Statically Indeterminate 
Structures

Determinacy of Trusses
– For a coplanar (two-dimensional) truss, 

there are at most two equilibrium equations 
for each joint j, so that if there is a total of b
members and r reactions, we have

ateindetermin statically     ,2
edeterminat statically    ,2

⇒>+
⇒=+

jrb
jrb

(5)
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Statically Indeterminate Axially 
Loaded Members

Example 4 (cont’d)

End plate

P

Tube (A2, E2)

Rod (A2, E2)

L
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Statically Indeterminate Axially 
Loaded Members

Example 4 (cont’d)

PP

P

FT/2

FT/2
FR

Tube (A2, E2)

Rod (A1, E1)

PFF

FFFPF

TR

R
TT

x

=+

=−−−=+→ ∑
                         

0
22

  ;0

FBD:
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Torsional Loading

Introduction
Cylindrical members

Fig. 1
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Stresses in Circular Shaft due to 
Torsion

ρ

dF = τρ dA

T T

B C

Fig. 7

Torsional Loading
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Shearing Strain

φ
ρ

L

Fig. 8

c

ργ

Torsional Shearing Strain
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Shearing Strain
For radius ρ, the shearing strain for circular 
shaft is

For radius c, the shearing strain for circular 
shaft is

L
ρφγ ρ =

L
c

c
φγ =

(6)

(7)

Torsional Shearing Strain
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Polar Moment of Inertia
The integral of equation 12 is called the 
polar moment of inertia (polar second 
moment of area).
It is given the symbol J.  For a solid circular 
shaft, the polar moment of inertia is given 
by 

( )
2

d 2d
4

0

22 cAJ
c πρπρρρ === ∫∫ (13)

Torsional Shearing Strain
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Polar Moment of Inertia
The integral of equation 12 is called the 
polar moment of inertia (polar second 
moment of area).
It is given the symbol J.  For a solid circular 
shaft, the polar moment of inertia is given 
by 

( )
2

d 2d
4

0

22 cAJ
c πρπρρρ === ∫∫ (13)

Torsional Shearing Strain
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Shearing Stress in Terms of Torque and 
Polar Moment of Inertia

J
T

J
Tc

ρτ

τ

ρ =

=max (17a)

(18a)

τ= shearing stress, T = applied torque
ρ = radius, and J = polar moment on inertia

Torsional Shearing Strain
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Torsional Displacements

Angle of Twist in the Elastic Range
The angle of twist for a circular uniform 
shaft subjected to external torque T is 
given by 

GJ
TL

=θ (22)
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Multiple Torques/Sizes

E1 E2 E3

L1 L2 L3
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==

==
n

i ii

ii
n

i
i JG

LT
11

θθ

Circular ShaftsFig. 12
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Angle of Twist in the Elastic Range
The angle of twist of various parts of a 
shaft of uniform member can be given by

∑∑
==

==
n

i ii

ii
n

i
i JG

LT
11

θθ (24)
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Torsional Displacements

Angle of Twist in the Elastic Range
If the properties (T, G, or J) of the shaft are 
functions of the length of the shaft, then

∫=
L

dx
GJ
T

0

θ (25)
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Stresses in Oblique Planes

Other Stresses Induced By Torsion

x

y A
Fig. 16

x

y

xyτ
xyτ

yxτ

yxτ

(a)

(b)
x

yt

α

α

n

σn dA

τn t dA

α

τyx dA sin α

τ x
 y

 d
A

co
sα

(c)
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
yt

α

n

σn dA

τn t dA

α

τyx dA sin α

τ x
 y

 d
A

co
sα

( ) ( )

( ) ατααττ

αατααττ

2cossincos
 whichFrom

0sinsincoscos
0  

22
xyxynt

yxxynt

t

dAdAdA
F

=−=

=+−
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Fig. 16c

(29)
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Stresses in Oblique Planes

Other Stresses Induced By Torsion
yt

α

n

σn dA

τn t dA

α

τyx dA sin α

τ x
 y

 d
A

co
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αταατσ
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==
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Fig. 16c

(31)
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Stresses in Oblique Planes

Maximum Normal Stress due to Torsion 
on Circular Shaft

The maximum compressive normal stress 
σmax can be computed from

J
cTmax

maxmax ==τσ (32)
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Power Transmission

Power Transmission by Torsional Shaft
– But ω = 2π f, where f = frequency.  The unit 

of frequency is 1/s and is called hertz (Hz).
– If this is the case, then the power is given 

by

f
T

fT

π

π

2
Power

or
2Power

=

=

(37)
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Power Transmission

Power Transmission by Torsional Shaft
– Units of Power

hp (33,000 ft·lb/min)watt (1 N·m/s)

US CustomarySI
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Power Transmission

Power Transmission by Torsional Shaft
– Some useful relations

lb/sin 6600lb/sft 550hp 1

Hz
60
1

60
1 rpm 1 1

⋅=⋅=

== −s

rpm = revolution per minute
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Summary

Axially Loaded Versus Torsionally
Loaded Members 

Deformation

Stress

TorsionAxial

EA
PL

=δ

J
Tρτ ρ =

GJ
TL

=θ

A
P

=σ
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Summary

Strain
– Two general types of strain:

• Axial (normal) Strain
• Shearing Strain

δL

θ

φ = γxy

δs

Normal Strain Shearing Strain

L


