\qquad
Section: \qquad

ENES 220 - Mechanics of Materials Spring 2001
March 9, 2001
EXAM \#1

Grading:

Problem 1: _ / 30
Problem 2: _ / 35
Problem 3: _ / 35
Total: \qquad / 100

Policies:

1. Write your name and section number on all sheets.
2. Use only the paper provided. Ask for additional sheets, if required.
3. Place only one problem on each sheet (front and back).
4. Draw a box around answers for numerical problems.
5. Give all answers to 3 or 4 significant figures.
6. Include free body diagrams (FBD's) for all equilibrium problems.
7. Closed book / closed notes; formula sheet permitted.
8. SHOW ALL WORK USED TO ARRIVE AT YOUR ANSWER.
\qquad
Section: \qquad

Problem \#1 (30 points): Two steel members of uniform rectangular cross section ($\mathrm{a}=1 \mathrm{in}, \mathrm{b}=$ 0.5 in) are welded together at an angle $\alpha=60^{\circ}$. The maximum stresses for the weld metal are $\sigma_{\mathrm{YS}}=50 \mathrm{ksi}$ and $\tau_{\mathrm{YS}}=35 \mathrm{ksi}$. For an applied load $\mathrm{P}=25 \mathrm{kip}$, determine the factor of safety with respect to yielding for the joint.

Name: \qquad
Section: \qquad

Problem \#2 (35 points): The rigid beam ABC is suspended from two rods AD and CE and is initially horizontal when the structure is unloaded at ambient temperature $\left(\mathrm{T}_{\mathrm{o}}=25^{\circ} \mathrm{C}\right)$. Rod AD is made of aluminum $\left(\mathrm{E}=70 \mathrm{GPa}, \alpha=23.6 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \sigma_{\mathrm{YS}}=300 \mathrm{MPa}\right)$ and rod CE is made of steel $\left(\mathrm{E}=200 \mathrm{GPa}, \alpha=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \sigma_{\mathrm{YS}}=250 \mathrm{MPa}\right)$. A load Q is then imposed at point B , and the temperature of all members is raised to $\mathrm{T}_{\mathrm{f}}=50^{\circ} \mathrm{C}$. Calculate:

(a) The maximum load Q to avoid yielding.
(b) The total deflection of point B.

Name: \qquad
Section: \qquad

Problem \#3 (35 points): The stepped shaft ABCD, composed of two solid, uniform cylinders joined at B, is fixed to the wall at points A and D. Section $A B$ is made of steel ($G=75 \mathrm{GPa}$) with a diameter of 30 mm . Section BCD is made of brass ($\mathrm{G}=39 \mathrm{GPa}$) with a diameter of 50 mm . A torque of $500 \mathrm{~N}-\mathrm{m}$ is imposed at point C. Determine:

(a) The reactions at A and D.
(b) The maximum shear stress in the steel and in the brass.

