Lab: Tu, W, Th, F

ENES 220 – Mechanics of Materials Spring 2000 May 24, 2000 FINAL EXAM

Grading:

Problem 1:	 /	100
Problem 2:	 /	100
Problem 3:	 /	100
Problem 4:	 /	100
Problem 5:	 /	100
Problem 6:	 /	100
Total:	 /	600

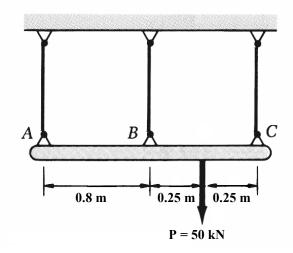
Policies:

- 1. Write your name and circle your lab day on all sheets.
- 2. Use only the paper provided. Ask for additional sheets, if required.
- 3. Place only one problem on each sheet (front and back).
- 4. Draw a box around answers for numerical problems.
- 5. Include free body diagrams (FBDs) for all equilibrium problems.
- 6. Closed book; closed notes.
- 7. Show all work used to arrive at your answer in an organized, top-down fashion.

Lab: Tu, W, Th, F

Problem #1:

(a) The rigid bar ABC is suspended from three steel wires as shown. Cables A, B, and C have a cross-sectional area of 100 mm² and an elastic modulus $E = 200(10^9)$ Pa. Cables A and C each have a length of 1 m, but cable B was manufactured to a length of only 0.99 m by mistake. Write all equations for (1) equilibrium and (2) compatibility necessary to solve this problem. DO NOT SOLVE THE EQUATIONS.



(b) Complete the following statements, using ONLY terms from the list below.

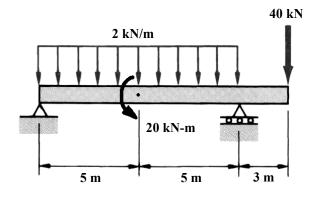
Poisson's ratio may have a value in the range from _____. Two items that describe the basic assumptions for writing equations in part (a) are _____. and _____.

-0.5 to 0	heterogeneous	anisotropic	linear-elastic
0 to 0.5	homogeneous	ductile material	plastic material
0.6 to 1.0	Von Mises' Principle	Mohr's Failur	e Criterion

Lab: Tu, W, Th, F

Problem #2:

(a) Plot the shear and bending moment diagrams for the beam subjected to the loading shown below. Identify all critical points necessary to unambiguously define all points on the diagrams.



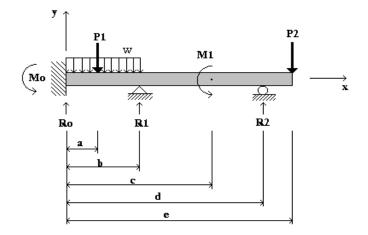
(b) Complete the following statements, using ONLY terms from the list below.

For the V & M diagrams to be applicable	ole, the material		
and the cross section			V = 0 at the
free end(s) is equivalent to			
does not have to be linear-elastic	must be linear	r-elastic	must be brittle
does not have to be uniform	must be unifo	rm	must be ductile
the principle of minimum potential	energy	$\Sigma F_x = 0$	$\Sigma F_y = 0$
must be subjected to bending about	the major axis		$\Sigma M_z = 0$

Lab: Tu, W, Th, F

Problem #3:

(a) The beam shown below is subjected to several forces, moments, and support reactions along its length. (1) Write a single expression for moment for the domain 0 < x < e (i.e. the entire beam) in terms of M₀, R₀, P₁, w, R₁, M₁, R₂, P₂, and geometry. (2) Write a single deflection equation for 0 < x < e in terms of M₀, R₀, P₁, w, R₁, M₁, R₂, P₂, and geometry.



(b) Complete the following statements, using ONLY terms from the list below.

Part (a) assumes that the beam has ______ and the

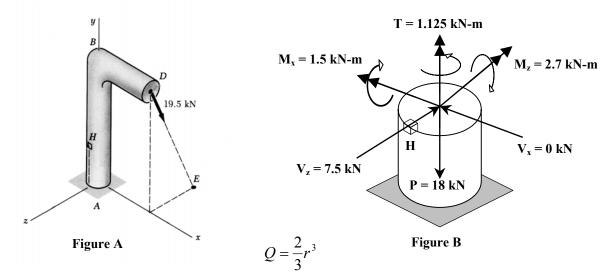
_____ is << 1. The shear deformation is ______.

constant EIrotationignoredconstant curvatureno thicknessabout the same order of magnitude as bending deformationdeformationdeformationto be statically determinateno flexural deformationcurvature

Lab: Tu, W, Th, F

Problem #4:

(a) A 19.5 kN force is applied at point D to the cast iron post depicted in figure A. This force causes internal forces and moments on the bottom section, in the directions shown in figure B. The post has a uniform circular cross-section with a diameter of 60 mm. Calculate the stresses that act at point H. Place your answers in the table below. Also, illustrate the stresses due to each load and the combined stress state on cubes in the table. Assume E = 165 GPa and G = 65 GPa for cast iron. (Perform all calculations on another page.)



Loads	V _x	Р	Vz	M _x	Т	Mz	Combined stresses @ pt. H
Stresses @ pt. H due to:							
Stresses on 3-D cube	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

(b) Complete the following statements, using ONLY terms from the list below.

At point H, tł	ne normal stress is in the			direction.	A straight line on
the cross-sect	ion				after deformation.
To obtain stre	esses, the material is assu	umed to be			<u>.</u>
axial	circumferential	ine	lastic	hyper-elas	stic
radial	is unpredictable	elastic	becc	mes quadrati	с
hoop	remains straight	plastic	is cu	rved but not o	quadratic

Name: _____

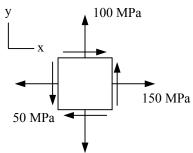
Lab: Tu, W, Th, F

Problem #4 (con't.):

Lab: Tu, W, Th, F

Problem #5:

(a) For the state of plane stress given on the element below, construct a Mohr's Circle. Use the circle to determine (1) the principal stresses, (2) the principal stress directions, (3) the maximum in-plane shear stress and corresponding normal stress, and (4) the shear stress direction. Show all quantities on properly oriented STRESS CUBE(S).



(b) For a state of hydrostatic tension of 100 MPa (i.e. $\sigma_1 = \sigma_2 = \sigma_3 = 100$ MPa), construct the Mohr's Circle(s) and calculate the absolute maximum shear stress.

(c) Complete the following statements, using ONLY terms from the list below.

For an isotropic, linear-elastic material, the volumetric strain for a state of hydrostatic tension of 100 MPa is ______ the volumetric strain for a state of uniaxial tension of 300 MPa (i.e. $\sigma_1 = 300$ MPa; $\sigma_2 = \sigma_3 = 0$). The state of plane stress for $\sigma_1 = -\sigma_2$ is known as pure ______. For a state of uniaxial tension, the failure stresses predicted by the maximum-shear-stress and maximum-distortion-energy theories are

equal to	greater than	less than	identical	opposite
tension	compression	shear	different	changed

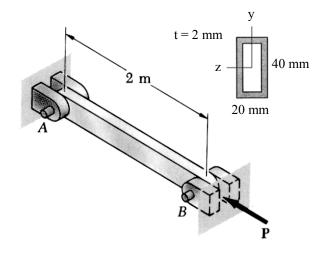
Name: _____

Lab: Tu, W, Th, F

Lab: Tu, W, Th, F

Problem #6:

(a) The aluminum tube AB has a hollow, rectangular cross section with a thickness of 2 mm, and is supported by pins and brackets at the ends. The constraints produce a pinned-pinned condition about the z-axis, and a fixed-fixed condition about the y-axis. Using E = 70 GPa and $\sigma_{ys} = 250$ MPa, find the allowable centric load P if a factor of safety of 2.5 is required.



(b) Complete the following statements, using ONLY terms from the list below.

For the same support conditions, a column will always buckle around the axis where the moment of inertia is ______. Deformation due to buckling is primarily in a ______ direction to the column axis. The two modes of failure for a column, similar to the one shown, are buckling and ______.

largestprincipalrotationalfatiguesmallestparallelsymmetricaltorsionindeterminateperpendicularbendingyielding

Name: _____

Lab: Tu, W, Th, F