

Slide No. 26

Risk-based Maintenance Management

Table 11. Condition States for Corrosion Damage (Visual Observation) **Condition State** Description Name Paint/Protection system is sound and 1 No Corrosion functioning as intended Surface rust or freckled rust has either 2 Low Corrosion formed or is in the process of forming. Surface or freckled rust is prevalent and Medium 3 Corrosion metal is exposed Active/High Corrosion is present and active, and a 4 Corrosion significant portion of metal is exposed Corrosion has caused section loss 5 Section Loss sufficient to warrant structural analysis to ascertain the effect of the damage.

Risk-ba	sed Main	tenance Managemer
Table 12. Condit	ion States for Corro	osion Damage (Measured Thickness Loss)
Condition State	Name	Description
1	No Corrosion	Paint/Protection system is sound and functioning as intended
2	Surface Corrosion	Less that 10% of metal thickness has been attacked by corrosion
3	Moderate Corrosion	Metal thickness loss is between 10% and 25%
4	Deep Corrosion	Metal thickness loss is between 25% and 50%
5	Excessive Corrosion	Metal thickness reduced to less than 50% of original thickness

E Star	A GALLA	CHAPTER 7	b. RISK CONTRO	L METHODS	Slide No. 37
	an .				
		Table 1	3. Demonstrativ	ve Maintenance Actions and	Associated Costs
		Condition State (CS)	Percentage of Component in CS (PCS)	Possible Maintenance Action (MA)	Expected Unit Cost of Maintenance Action (EUCMA) \$
		1	r ⁰	1-No Repair	0
		1	\mathbf{s}_1	2-Monitor	<i>C</i> (1,2)
			0	3-No Repair	0
		2	S_2^0	4-Monitor	<i>C</i> (2,4)
-			2	5- Spot Blast/Patch Coating	<i>C</i> (2,5)
3		3	s_{2}^{0}	6-No Repair	0
				7-Spot Blast/Patch Coating	<i>C</i> (3,7)
		-	3	8-Spot Blast/ Weld Cover Plate/Patch Coating	<i>C</i> (3,8)
			0	9-No Repair	0
		4	s_4^0	10-Cut Out/Weld New Plate/Spot Blast/Patch Coating	<i>C</i> (4,10)
				11-Add/Maintain Sacrificial Anode	<i>C</i> (4,11)
			0	12-No Repair	0
		5	S_{5}^{0}	13-Cut Out/Weld New Plate/Spot Blast/Patch Coating	<i>C</i> (5,13)
C				14- Replace Component	<i>C</i> (5,14)

Table 14. Example of Possible	Consequences of Subsystem Failure
Consequence of Failure	Consequence Cost Per Incident \$
1. Minor Structural Failure	C_1 = Minor Unplanned Repair Cost
2. Reduction/Loss of Serviceability	C_2 = Economic Cost due to Loss of Serviceability
3. Major Structural Failure	C_3 = Substantial Unplanned Repair Cost/ Economic Cost
4. Major Oil Spill, Leak, or other form of Environmental Pollution	C_4 = Environmental Cleaning/Litigation Cost

Cherry C	CHAPTER 7b. RISK CONTROL METHODS		Slide No. 50
.m. 94	Risk-based Mainte	enance Manage	ement
	Table 15. Sample Ranking Sch	eme for a Typical Subsystem	
1000	Bottom Structure Components	(Level of Importance 1-4) 1-Low Importance 4-High Importance	
	Bottom Plating	4	
	Bottom Longitudinals	4	
	Bottom Girders and Brackets	4	
	Bottom Transverse Webs	3	
	Panel Stiffening	4	
9			-

CHAPTER 7b. RISK C			Slide No. 52
Risk-bas	ed Mainte	enance	Management
	Table 16. An Ex	ample of a	
	Probabilistic Tra	nslation Scheme	2
	Probability	Value	
	Low	10-6	
	Medium	10-4	
	High	10-2	
	Very High	10-1	
G			

Risk-based Maintenance Management

Conditi on State	Action	Probability of Failure Consequence	Expected Unit Failure Cost (EUFC)
1	No Repair	$P_{1C_1} P_{1C_2} P_{1C_3} P_{1C_4}$	$R_1 = P_{1C_1}C_1 + P_{1C_2}C_2 + P_{1C_3}C_3 + P_{1C_4}C_4$
2	No Repair	P_{2C_1} P_{2C_2} P_{2C_3} P_{2C_4}	$R_2 = P_{2C_1}C_1 + P_{2C_2}C_2 + P_{2C_3}C_3 + P_{2C_4}C_4$
3	No Repair	P_{3C_1} P_{3C_2} P_{3C_3} P_{3C_4}	$R_3 = P_{3C_1}C_1 + P_{3C_2}C_2 + P_{3C_3}C_3 + P_{3C_4}C_4$
4	No Repair	$P_{4C_1} P_{4C_2} P_{4C_3} P_{4C_4}$	$R_4 = P_{4C_1}C_1 + P_{4C_2}C_2 + P_{4C_3}C_3 + P_{4C_4}C_4$
5	No Repair	$P_{5C_1} P_{5C_2} P_{5C_3} P_{5C_4}$	$R_5 = P_{5C_1}C_1 + P_{5C_2}C_2 + P_{5C_3}C_3 + P_{5C_4}C_4$

IS.	k-	base	d N	Mai	inte	ena	nc	e Ma	inag
abl	e 18	. Impleme	entatio	on of N	Mainte	enanc	e Acti	ions to Est	imate F
cs	PCS	Maintenance Action	nance Transition Probabilities Among				Expected Unit Maintenance	Expected Failure	
		Number	1	2	3	4	5	Cost	Cost
1		1	P ₁₁ (1)	P ₁₂ (1)	P ₁₃ (1)	P ₁₄ (1)	P ₁₅ (1)	0	D
1	\$10	2	P ₁₁ (2)	P ₁₂ (2)	P ₁₃ (2)	P ₁₄ (2)	P ₁₅ (2)	C(1,2)	K_{I}
2	s ₂₀	3	P ₂₁ (3)	P ₂₂ (3)	P ₂₃ (3)	P ₂₄ (3)	P ₂₅ (3)	C(2,3)	<i>R</i> ₂
		4	P ₂₁ (4)	P ₂₂ (4)	P ₂₃ (4)	P ₂₄ (4)	P ₂₅ (4)	C(2,4)	
		5	P ₂₁ (5)	P ₂₂ (5)	P ₂₃ (5)	P ₂₄ (5)	P ₂₅ (5)	C(2,5)	
		6	P ₂₁ (6)	P ₂₂ (6)	P ₂₃ (6)	P ₂₄ (6)	P ₂₅ (6)	C(3,6)	<i>R</i> 3
3	S30	7	P ₃₁ (7)	P ₃₂ (7)	P ₃₃ (7)	P ₃₄ (7)	P ₃₅ (7)	C(3,7)	
		8	P ₃₁ (8)	P ₃₂ (8)	P ₃₃ (8)	P ₃₄ (8)	P ₃₅ (8)	C(3,8)	
		9	P ₄₁ (9)	P ₄₂ (9)	P ₄₃ (9)	P ₄₄ (9)	P ₄₅ (9)	C(4,9)	
4	S ₄₀	10	$P_{41}(10)$	P ₄₂ (10)	P ₄₃ (10)	P ₄₄ (10)	P ₄₅ (10)	C(4,10)	R_4
		11	P ₄₁ (11)	P ₄₂ (11)	P ₄₃ (11)	P ₄₄ (11)	P ₄₅ (11)	C(4,11)	
		12	$P_{51}(12)$	P ₅₂ (12)	P ₅₃ (12)	P ₅₄ (12)	P ₅₅ (12)	C(5,12)	
5	S_{50}	13	P ₅₁ (13)	P ₅₂ (13)	P ₅₃ (13)	P ₅₄ (13)	P ₅₅ (13)	C(5,13)	R_5
		14	P ₅₁ (14)	P ₅₂ (14)	P ₅₃ (14)	P ₅₄ (14)	P ₅₅ (14)	C(5,14)	

CHAPTER 7b. RISK CONTROL METHODS Slide No. 86 Risk-based Maintenance Management

Year 1	CS1	CS2	CS3	CS4	CS5
Component 1	45%	45%	5%	5%	0%
Component 2	35%	25%	30%	5%	5%
Component 3	5%	20%	45%	15%	15%
Component 4	10%	45%	35%	5%	5%

CE IT	Risk	-based]	Mainte	nance	Manag	ement
	Table 20. U	Jnit Maintenanc	e Cost for Co	nponents		
	Condition	Maintenance	Component 1	Component 2	Component 3	Component
	State	Action	Component i	Component 2	component 5	component -
	CS1	1	\$0	\$0	\$0	\$0
		2	\$1,000	\$1,100	\$1,000	\$1,200
	CS2	3	\$0	\$0	\$0	\$0
		4	\$1,000	\$1,100	\$1,100	\$1,200
		5	\$2,100	\$2,200	\$2,350	\$3,500
	CS3	6	\$0	\$0	\$0	\$0
		7	\$2,000	\$2,200	\$2,300	\$3,650
		8	\$2,500	\$2,750	\$2,750	\$3,750
	CS4	9	\$0	\$0	\$0	\$0
		10	\$3,500	\$3,850	\$2,750	\$4,950
		11	\$2,500	\$2,750	\$3,850	\$4,850
	CS5	12	\$0	\$0	\$0	\$0
		13	\$3,500	\$3,850	\$3,850	\$4,850
		14	\$4 000	\$4,400	\$4,400	\$5,489

Risk-based Maintenance Management

Slide No. 82

Slide No. 83

Table 21. Unit Failure/Risk Cost for Components

Component	CS1	CS2	CS3	CS4	CS5
Component 1	\$500	\$1,500	\$3,500	\$4,500	\$6,500
Component 2	\$550	\$1,650	\$3,850	\$4,950	\$7,100
Component 3	\$550	\$1,650	\$3,850	\$4,950	\$7,100
Component 4	\$550	\$1,650	\$3,850	\$6,153	\$8,178

PTER 7b. RISK CONTROL METHODS

Risk-based Maintenance Management

Table 22. Transition Probabilities for Component 1

Condition State	Maintenance Action	CS1	CS2	CS3	CS4	CS5
CS1	1	90%	10%	0%	0%	0%
	2	90%	10%	0%	0%	0%
CS2	3	0%	80%	20%	0%	0%
	4	0%	80%	20%	0%	0%
	5	70%	30%	0%	0%	0%
CS3	6	0%	0%	70%	30%	0%
	7	70%	30%	0%	0%	0%
	8	80%	15%	5%	0%	0%
CS4	9	0%	0%	0%	65%	35%
	10	65%	20%	10%	5%	0%
	11	85%	10%	3%	2%	0%
CS5	12	0%	0%	0%	0%	100%
	13	65%	20%	10%	5%	0%
	14	80%	10%	10%	0%	0%

CHAPTER 7b. RISK CONTROL METHODSSlide No. 8Risk-based Maintenance Management

Slide No. 84

Slide No. 85

Table 23. Transition Probabilities for Component 2

Condition State	Maintenance Action	CS1	CS2	CS3	CS4	CS5
CS1	1	85%	15%	0%	0%	0%
	2	95%	5%	0%	0%	0%
CS2	3	0%	75%	25%	0%	0%
	4	0%	75%	25%	0%	0%
	5	70%	30%	0%	0%	0%
CS3	6	0%	0%	65%	35%	0%
	7	70%	30%	0%	0%	0%
	8	80%	15%	5%	0%	0%
CS4	9	0%	0%	0%	60%	40%
	10	85%	10%	3%	2%	0%
	11	75%	25%	0%	0%	0%
CS5	12	0%	0%	0%	0%	100%
	13	65%	20%	10%	5%	0%
	14	95%	5%	0%	0%	0%

CHAPTER 7b. RISK CONTROL METHODSSlide No. 8Risk-based Maintenance Management

able 24.	Transition Prol	babilities f	for Compo	nent 3		
Condition State	Maintenance Action	CS1	CS2	CS3	CS4	CS5
CS1	1	85%	15%	0%	0%	0%
	2	95%	5%	0%	0%	0%
CS2	3	0%	82%	18%	0%	0%
	4	0%	82%	18%	0%	0%
	5	70%	30%	0%	0%	0%
CS3	6	0%	0%	65%	35%	0%
	7	80%	20%	0%	0%	0%
	8	85%	15%	0%	0%	0%
CS4	9	0%	0%	0%	60%	40%
	10	85%	10%	3%	2%	0%
	11	75%	25%	0%	0%	0%
CS5	12	0%	0%	0%	0%	100%
	13	55%	0%	0%	45%	0%
	14	95%	5%	0%	0%	0%

Risk-based Maintenance Management

Condition State	Maintenance Action	CS1	CS2	CS3	CS4	CS5
CS1	1	85%	15%	0%	0%	0%
	2	85%	15%	0%	0%	0%
CS2	3	0%	82%	18%	0%	0%
	4	0%	82%	18%	0%	0%
	5	80%	10%	10%	0%	0%
CS3	6	0%	0%	65%	35%	0%
	7	80%	20%	0%	0%	0%
	8	83%	11%	6%	0%	0%
CS4	9	0%	0%	0%	60%	40%
	10	85%	10%	3%	2%	0%
	11	84%	16%	0%	0%	0%
CS5	12	0%	0%	0%	0%	100%
	13	85%	0%	15%	0%	0%
	14	95%	5%	0%	0%	0%

Risk-bas	ed M	ainte	nanc	e Ma	nagen	1en
Table 26. AssurComponents	ned Long	Гerm Optir	nal Mainte	nance Poli	cies for	
Component	CS1	CS2	CS3	CS4	CS5	
Component 1	1	5	7	11	13	
Component 2	1	5	7	11	14	
Component 3	1	5	7	10	14	
Component 4	1	5	7	11	13	

CHAPTER 7b. RISK CONTROL METHODS Slide No. 94 Risk-based Maintenance Management

Table 27 . Condition State Distribution if Implementation of Optimal
Maintenance Policies is Delayed 1 Year

Year 2	CS1	CS2	CS3	CS4	CS5
Component 1	41%	41%	13%	5%	2%
Component 2	30%	24%	26%	14%	7%
Component 3	4%	17%	33%	25%	21%
Component 4	9%	38%	31%	15%	7%

F able 28 . Condit Maintenance Poli	ion State D cies is Dela	istribution if ayed 2 Years	Implementa	ation of Opti	mal
Year 3	CS1	CS2	CS3	CS4	CS5
Component 1	36%	36%	16%	8%	5%
Component 2	26%	22%	23%	16%	14%
Component 3	4%	15%	25%	24%	32%
Component 4	7%	33%	26%	19%	15%

CHAPTER 76. RISK CONTROL METHODS Slide No. 96 Risk-based Maintenance Management

Table 29 . Condition State Distribution if Implementation of Optimal
Maintenance Policies is Delayed 3 Years

Year 4	CS1	CS2	CS3	CS4	CS5
Component 1	33%	32%	17%	10%	8%
Component 2	22%	20%	20%	17%	21%
Component 3	3%	14%	19%	22%	42%
Component 4	6%	29%	23%	19%	23%

		ame	lance	Ivialia	igenie
Table 30. Condit Maintenance Pol	tion State I icies is Del	Distribution layed 4 Year	if Implemen rs	itation of Oj	otimal
Year 5	CS1	CS2	CS3	CS4	CS5
Component 1	29%	28%	18%	12%	12%
Component 2	19%	18%	18%	17%	28%
Component 3	3%	12%	15%	19%	51%
Component 4	6%	25%	20%	19%	31%

Risk-based Maintenance Management

Component 1	\$0	\$2,100	\$2,000	\$2,500	\$3,500
Component 2	\$0	\$2,200	\$2,200	\$2,750	\$4,400
Component 3	\$0	\$2,350	\$2,300	\$2,750	\$4,400
Component 4	\$0	\$3,500	\$3,650	\$4,850	\$4,850

