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Availability
– If the time to failure is characterized by its 

mean, called mean time to failure (MTTF), and 
the time to repair is characterized by its mean, 
called mean time to repair (MTTR), a definition 
of this probability of finding a given product in 
a functioning state can be given by the 
following ratio for availability (A):
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Reliability, Failure Rates, and Hazard 
Functions
– As a random variable, the time to failure (TTF

or T for short) is completely defined by its 
reliability function, R(t).

– The reliability function is defined as the 
probability that a unit or a component does not 
fail in the time interval (0,t] or, equivalently, the 
probability that the unit or the component 
survives the time interval (0, t], under a 
specified environment.
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Reliability, Failure Rates, and Hazard 
Functions (cont’d)
– The probability part of this definition of the TTF

can be expressed using the reliability function 
R(t) as follows:

R(t) = Pr (T > t) (35)

Pr = probability
T = time to failure
t = any time period
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Reliability, Failure Rates, and Hazard 
Functions (cont’d)
– The reliability function is also called the 

survivor (or survivorship) function.
– Another function, that can completely define 

any random variable (e.g., time to failure as 
well as time to repair) is the cumulative 
distribution function. This function is given as
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F(t) = 1 - R(t) = Pr (T ≤ t) (36)
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Reliability, Failure Rates, and Hazard 
Functions (cont’d)
– The CDF is the probability that the product 

does not survive the time interval (0, t].
– Assuming the TTF as a random variable to be 

a continuous positively defined, and F(t) to be 
differentiable, the CDF can be written as 
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Reliability, Failure Rates, and Hazard 
Functions (cont’d)
– Exponential Distribution

• The exponential distribution has a reliability 
function R(t) as given by
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R(t) = exp(-λt) (38)

λ = failure rate = constant
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Reliability, Failure Rates, and Hazard 
Functions (cont’d)
– Weibull Distribution

• The reliability function of the two-parameter Weibull
distribution is
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(39)

α = scale parameter
β = shape parameter

R(t) = exp[-(t/α)β]
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Reliability, Failure Rates, and Hazard 
Functions (cont’d)
– Lognormal Distribution

• The reliability function of the lognormal distribution 
is given by
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(40)

µ = log mean
σ = log standard deviation
Φ(.) = standard normal cumulative distribution function







 −
−Φ=






 −

Φ−=
σ

µ
σ

µ )ln()ln(1)( tttR

dxxy
y











−=Φ ∫

∞−
2

exp
2
1)(

2

π
(41)

CHAPTER 4b.  RELIABILITY ASSESSMENT Slide No. 9

Hazard Functions
– The conditional probability

Pr(t < T ≤ t + ∆t | T > t)
is the failure probability of a product unit in the 
time interval (t, t + ∆t], with the condition that 
the unit is functioning at time t, for small ∆t.

– This conditional probability can be used as a 
basis for defining the hazard function for the 
unit by expressing the conditional probability 
as
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Hazard Functions (cont’d)
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Hazard Functions (cont’d)
– The CDF, F(t), for the time to failure, F(t), and 

the reliability function, R(t), can always be 
expressed in terms of the so-called cumulative 
hazard rate function (CHRF), H(t), as follows:
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Hazard Functions (cont’d)
– Based on Eq. 45, the CHRF can be expressed 

through the respective reliability function as

– It can be shown that the cumulative hazard 
rate function and the hazard (failure) rate 
function are related to each other as
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Hazard Functions (cont’d)
– The cumulative hazard rate function and its 

estimates must satisfy the following 
conditions:

H(t) = non-decreasing function that can be 
expressed as
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Hazard Functions (cont’d)
– For the exponential distribution, the hazard 

(failure) rate function is constant, and is given 
by 

and the exponential cumulative hazard rate 
function is
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h(t) = λ

H(t) = λt

(49)

(50)
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Hazard Functions (cont’d)
– The Weibull hazard (failure) rate function is a 

power law function, which can be written as

– and the respective Weibull cumulative hazard 
rate function is
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Hazard Functions (cont’d)
– For the lognormal distribution, the cumulative 

hazard (failure) rate function can be obtained, 
using Eqs. 46 and 40, as
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Hazard Functions (cont’d)
– The lognormal hazard (failure) rate function 

can be obtained as the derivative of the 
corresponding CHRF:
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Selection and Fitting Reliability Models
– The best lifetime distribution for a given 

product is the one based on the probabilistic 
physical model of the product.

– Unfortunately, such models might not be 
available.

– Nevertheless, the choice of the appropriate 
distribution should not be absolutely arbitrary, 
and at least some physical requirements must 
be satisfied.
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Selection and Fitting Reliability Models
– Complete Data, Without Censoring

• If the available data are complete, i.e., without 
censoring, the following empirical reliability 
(survivor) function, i.e., estimate of the reliability 
function, can be used: 
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Selection and Fitting Reliability Models

– In the case of complete data with distinct 
failures, k = n.

– The estimate can also be applied to the Type I 
and II right-censored data.

Empirical Reliability Analysis 
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ti = the ith failure time denoted according to their ordered
values (order statistics) as t1 < t2 < ... < tk

k = the number of failures, and n is the sample size
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Selection and Fitting Reliability Models
– In the case of Type I censoring, the time 

interval of Sn(t) estimation is (0, T], where T = t0
is the test (or observation) duration.

– In the case of Type II censoring, the 
respective time interval is (0, tr], where tr is the 
largest observed failure time.

– This commonly-used estimate, Sn(t), is called 
the empirical survivor function.

Empirical Reliability Analysis 
Using Life Data
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Selection and Fitting Reliability Models
– Complete Data, Without Censoring (cont’d)

• Based on 55, an estimate of the CDF of TTF can 
be obtained as

Empirical Reliability Analysis 
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)(1)( tStF nn −= (56)

Fn(t) = estimate of the CDF of time to failure
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Example 5: Single Failure Mode, Small 
Sample Without Censoring
– The single failure mode, non-censored data 

presented in Example 2 are used to illustrate 
the estimation of an empirical reliability 
function using Eq. 55.

– The sample size n in this case is 19.
– The TTFs and the results of calculations of the 

empirical survivor function Sn(t) are given in 
Table 4. 

Empirical Reliability Analysis 
Using Life Data
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Time Order 
Number 

TTF 
(Years) 

Empirical Survivor  
Function 

0 0 19/19 = 1 
1 26 18/19 = 0.947368 
2 27 17/19 = 0.894737 
3 28 16/19 = 0.842105 
4 29 15/19 = 0.789474 
5 30 14/19 = 140.736842 
6 31 13/19 = 0.684211 
7 32 12/19 = 0.631579 
8 33 11/19 = 0.578947 
9 34 10/19 = 0.526316 

10 35 9/19 = 0.473684 
11 36 8/19 = 0.421053 
12 37 7/19 = 0.368421 
13 38 6/19 = 0.315789 
14 39 5/19 = 0.263158 
15 40 4/19 = 0.210526 
16 42 3/19 = 0.157895 
17 43 2/19 = 0.105263 
18 50 1/19 = 0.052632 
19 56 0/19 = 0 
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Table 4
Empirical Survivor Function,
Sn(t), Based on Data of
Example 2
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Empirical Reliability Analysis 
Using Life Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60
Time to Failure (Years)

Survivorship Value 

Figure 6. . Survivorship Function for Single Failure Mode Without 
Censoring of Example 5
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Example 6: Single Failure Mode, Small 
Sample, Type I Right Censored Data
– Equation 55 can be applied to Type I and II 

right censored data as was previously stated, 
which is illustrated in this example.

– The data for this example are given in Table 1 
as based on single failure mode, Type I right-
censored data.

Empirical Reliability Analysis 
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Example 6 (cont’d)

– The TTFs and the calculation results of the 
empirical survivor function based on Eq. 55 
are given in Table 5.

– The sample size n case is 12.

TTCTTCTTCTTCTTFTTFTTFTTFTTFTTFTTFTTFTTF or TTC

51515151464037311815147Time (Years)

121110987654321Time Order 
Number

Table 1. Example of Type I Right Censored Data (in Years) for Equipment

TTF = time to failure, and TTC = time to censoring

Empirical Reliability Analysis 
Using Life Data



15

CHAPTER 4b.  RELIABILITY ASSESSMENT Slide No. 28

Example 6 (cont’d)

Empirical Reliability Analysis 
Using Life Data

Time Order 
Number 

Time to 
Failure, TTF 

(Years) 

Time to 
Censoring, TTF 

(Years) 

Empirical Survivor 
Function 

0 0  1.000000 
1 7  0.916667 
2 14  0.833333 
3 15  0.750000 
4 18  0.666667 
5 31  0.583333 
6 37  0.500000 
7 40  0.416667 
8 46  0.333333 
9  51 0.333333 

10  51 0.333333 
11  51 0.333333 
12  51 0.333333 

 

Table 5
Empirical Survivor Function, Sn(t),
Based on Data Given in Table 1 
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Example 6 (cont’d)
– Censoring was performed at the end, i.e., 

without any censoring in between failures.
– The empirical survivor function in the case of 

right censoring does not reach the zero value 
on the right, i.e., at the longest TTF observed.

– The results are plotted in Figure 7 as 
individual points.

Empirical Reliability Analysis 
Using Life Data
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Empirical Reliability Analysis 
Using Life Data
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Figure 7. Survivorship Function for Single Failure Mode With Censoring 
of Example 6
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Example 7: Single Failure Mode, Large 
Sample Data
– The data in this example are based on Monte 

Carlo simulation.
– The TTFs and the estimation results of the 

empirical survivor function based on Eq. 55 
are given in Table 6.

– The table shows only a portion of data since 
the simulation process was carried out for 
20,000 simulation cycles.

Empirical Reliability Analysis 
Using Life Data
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Example 7 (cont’d)

Empirical Reliability Analysis 
Using Life Data

MMMM

0.850500179672004

0.859450177662003
0.868300172652002
0.876900170642001

1.000000001937

Survivor 
Function

Number
of Failures

TTF
(Years)

Year

Table 6. Example 7 Data and Empirical Survivor Function, Sn(t)
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Example 7 (cont’d)
– The complete data set covers years from 1937 

to 2060.
– For example, the survivorship value at the 

year 1974 is computed as

– The empirical survivorship values are shown 
in Figure 8. 
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Example 7 (cont’d)

Empirical Reliability Analysis 
Using Life Data
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Figure 8. Empirical Survivor Function for Example 7
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Selection and Fitting Reliability Models
– Samples With Censoring

• In the this case, the Kaplan-Meier (or product-limit) 
estimation procedure can be applied to obtain the 
survivor function that accounts for both TTFs and 
TTCs.

• The Kaplan-Meier estimation procedure is based 
on a sample of n items, among which only k values 
are distinct failure times with r observed failures.

• Therefore, r minus k (i.e., r-k) repeated (non-
distinct) failure times exist.

Empirical Reliability Analysis 
Using Life Data
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Selection and Fitting Reliability Models
– Samples With Censoring (cont’d)

• The failure times are denoted similar to Eqs. 33a 
and 33b, according to their ordered values:
t1 < t2 < ... < tk, and t0 is equal to zero, i.e., t0 = 0.

• The number of items under observation 
(censoring) just before tj is denoted by nj.

• The number of failures at tj is denoted by dj. Then, 
the following relationship holds:

Empirical Reliability Analysis 
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jjj dnn −=+1 (57)
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Selection and Fitting Reliability Models
– Samples With Censoring (cont’d)

• Under these conditions, the product-limit estimate 
of the reliability function, Sn(t), is given by

Empirical Reliability Analysis 
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t = time to failure of an equipment
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Selection and Fitting Reliability Models
– Samples With Censoring (cont’d)

• For cases where dj = 1, i.e., one failure at time tj, 
Eq. 58 becomes

Empirical Reliability Analysis 
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(59)
















∞<≤

−=<≤








 −

<≤

= +
=
∏

tt

kittt
n

n

tt

tS

k

ii

i

j j

j
n

0

1,...,2,1for    
1

01

)( 1
1

1

CHAPTER 4b.  RELIABILITY ASSESSMENT Slide No. 39

Selection and Fitting Reliability Models
– Samples With Censoring (cont’d)

• For uncensored (complete) samples with dj = 1, the 
product-limit estimate coincides with the empirical 
Sn(t) given by Eq. 55 as follows:
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Example 8: A Small Sample with Two 
Failure Modes
– In this example, life data consist of times to 

failure related to multiple failure modes (FMs).
– The reliability function corresponding to each 

FM needs to be estimated using Eq. 58.
– As an example, two FMs, i.e., FM1 and FM2, 

are considered herein. 

Empirical Reliability Analysis 
Using Life Data

CHAPTER 4b.  RELIABILITY ASSESSMENT Slide No. 41

Example 8 (cont’d)
– Such TTF sample can be represented, for 

example, as follows:

– For cases involving more than two FMs in a 
sample, the reliability function for a specific 
FMi can be estimated by treating the TTFs
associated with failure modes other than FMi
as times to censoring (TTC).

Empirical Reliability Analysis 
Using Life Data

t1 (FM1) < t2 (FM1) < t3 (FM2) < t4 (FM1) < ... < tk (FM2) 
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Example 8 (cont’d)
– It should be noted that censoring means that an 

item survived up to the time of censoring and 
the item was removed from testing or service.

– A sample of 12 TTFs associated with two failure 
modes, strength (FM1) and fatigue (FM2), are 
shown in Table 7a.

– The calculations of the empirical survivor 
function based on Eq. 58 are given in Table 7a.

Empirical Reliability Analysis 
Using Life Data
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0.0000000168.312

0.2083330151.711

0.4166670151.010

0.6250000149.69

0.8333331021.38

0.8333330116.27

1.0000001011.76

1.000000109.05

1.000000106.24

1.000000101.93

1.000000101.12

1.000000100.11

1.00000000

Empirical Survivor Function 
for Failure Mode1

(Strength)

Number of Occurrences 
of Failure Mode 2 

(Fatigue)

Number of Occurrences 
of Failure Mode 1 

(Strength)

Time to 
Failure
(Years)

Time Order 
Number

Empirical Reliability Analysis 
Using Life Data

Table 7a. Example 8 Small Sample Data and Respective Empirical Survivor Function for Failure Mode 1 Sn(t)
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Example 8 (cont’d)
– Table 7b provides the computational details of 

the empirical survivorship values for failure 
mode 1, with the sample size n = 12 and cj = 
number of items censored at time j.

– At time order 7 of Tables 7a and 7b, 
Sn(16.2) = 1-1/6 = 0.8333

– Similarly at the time order number 9 of these 
tables, 

Sn(49.6) = (1-1/6)(1-1/4) = 0.625

Empirical Reliability Analysis 
Using Life Data
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Time 
Order 

Number 
j 

Time to 
Failure 
(Years) 

tj 

Number of 
Failures for 

Mode 1 
dj 

Number of 
Censorings 
for Mode 1 

cj 

 
 

nj =  
n – dj-1 - cj-1 

 
 
 

(1-dj/nj) 

Empirical 
Survivor 

Function for 
Mode1 

0 0     1.000000 
1 0.1 0 1 12  1.000000 
2 1.1 0 1 11  1.000000 
3 1.9 0 1 10  1.000000 
4 6.2 0 1 9  1.000000 
5 9.0 0 1 8  1.000000 
6 11.7 0 1 7  1.000000 
7 16.2 1 0 6 1-1/6 0.833333 
8 21.3 0 1 5  0.833333 
9 49.6 1 0 4 1-1/4 0.625000 
10 51.0 1 0 3 1-1/3 0.416667 
11 51.7 1 0 2 1-1/2 0.208333 
12 68.3 1 0 1 0 0.000000 

 

Table 7b. Example 8 Computational Details for Empirical Survivor Function 
for Failure Mode 1 Sn(t)

Empirical Reliability Analysis 
Using Life Data
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Example 9: Large Sample with Two Failure 
Modes
– Two failure modes, strength (FM1) and fatigue 

(FM2), are simulated in this example.
– A portion of these data related to one 

component is examined herein.
– The full sample size is 20,000,
– The TTFs and the results of calculations of the 

empirical survivor function based on Eq. 58 
are given in Table 8.

Empirical Reliability Analysis 
Using Life Data
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Example 9 (cont’d)

Empirical Reliability Analysis 
Using Life Data

0.997984671192003

0.998036731182002

0.998087642172001

0.998190551162000

0.998241442151999

Survivor 
Function for 

Failure Mode1 
(Strength)

Number of 
Occurrences of 
Failure Mode 2 

(Fatigue)

Number of 
Occurrences of 
Failure Mode 1 

(Strength)

Time to 
Failure
(Years)

Year
Table 8. Data and Empirical Survivor Function for Failure Mode 1 Sn(t)
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Example 9 (cont’d)
– The complete data set covers years from 1984 

till 2060.
– The results are plotted in Figure 9 as a step 

function.
– The figure also shows the fitted reliability 

function using loglinear transformation and 
regression as discussed in Example 11.

Empirical Reliability Analysis 
Using Life Data
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Example 9 (cont’d)
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Figure 9. Empirical Survivor Function for Example 9 
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Selection and Fitting Reliability Models
– Parametric Reliability Functions

• Besides the traditional distribution estimation 
methods, such as the method of moments and 
maximum likelihood described in Appendix A, the 
empirical survivor functions can be used to fit 
analytical reliability functions.

• After evaluating an empirical reliability function, an 
analytical parametric hazard rate functions, such as 
given by Eqs. 45 and 47, can be fitted using the 
empirical survivorship function obtained from life 
data.

Empirical Reliability Analysis 
Using Life Data
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Selection and Fitting Reliability Models
– Parametric Reliability Functions (cont’d)

• The Weibull reliability function was used in studies 
performed for the U. S. Army Corps of Engineers 
as provided in Eq. 39 including the exponential 
reliability function as its specific case.

• Also, the reliability function having a polynomial 
cumulative hazard function was used as follows:   

Empirical Reliability Analysis 
Using Life Data

R(t) = exp(-H(t)) 

H(t) = a0 + a1 t + a2 t2

(60a)

(60b)
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Selection and Fitting Reliability Models
– Parametric Reliability Functions (cont’d)

• Therefore, the hazard function is given by

• For the special case where the parameters a0 and 
a2 are equal to zero, Eq. 60b reduces to the 
exponential distribution.

• For the special case where the parameters a0 and 
a1 are zeros, the Eq. 60b reduces to the specific 
case of the Weibull distribution with the shape 
parameter of 2 (Rayleigh distribution)   

Empirical Reliability Analysis 
Using Life Data

(60c)h(t) = a1 + 2 a2 t
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Selection and Fitting Reliability Models
– Parameter Estimation Using Loglinear

Transformation
• Eqs. 60a to 60c provide exponential models with 

parameters a0, a1, and a2.  The logarithmic 
transformation of Eqs. 60a to 60c leads to

Empirical Reliability Analysis 
Using Life Data

- ln(R(t)) = a0 + a1 t

- ln(R(t)) = a0 + a1 t + a2 t2

(61a)

(61b)
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Selection and Fitting Reliability Models
– Parameter Estimation Using Loglinear

Transformation
• Using y to denote the left side of these equation, 

i.e., y = - ln(R(t)), the following solutions can be 
obtained for the parameters a’s according to Eq. 
61a:

Empirical Reliability Analysis 
Using Life Data
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Selection and Fitting Reliability Models
– Parameter Estimation Using Loglinear

Transformation
• The parameters of Eq. 61b can obtained by solving 

the following set of simultaneous equations: 

Empirical Reliability Analysis 
Using Life Data
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Example 10: Loglinear Transformation for 
Parameter Estimation for Example 7 Data
– For Example 7 data, the loglinear least square 

estimation gives the following values of the 
parameter estimates:

Empirical Reliability Analysis 
Using Life Data

a0 = 0.263018

a1 = - 0.013930   (1/Year)

a2 = 0.000185   (1/Year2)
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Example 10: (cont’d)
– All the model parameters estimates are of high 

statistical significance.
– The multiple adjusted correlation coefficient 

squared (R2) is 0.999 indicating a good fit.
– The fitted values of reliability function and the 

respective empirical survivor function are 
given in Table 9 and Figure 8.

– Example 4.11 of your Textbook shows another 
example of estimating the parameters.

Empirical Reliability Analysis 
Using Life Data
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M

M M

MMMM

MMM

0.8519960.850500179672004
0.8611400.859450177662003
0.8700600.868300172652002

_
1.0000000361973

_
1.000000001937

Fitted Reliability 
Function

Survivor 
Function

Number of
Failures

Time to Failure
(Years)

Year

Empirical Reliability Analysis 
Using Life Data

Table 9. Empirical Survivor Function, Sn(t), and Fitted Reliability Function 
Using Loglinear Transformation and Regression for Example 10
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Example 10 (cont’d)

Empirical Reliability Analysis 
Using Life Data

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

35 40 45 50 55 60 65 70

Time To Failure (Years)

Fitted 

Data

Survivorship value

Figure 8. Fitted Reliability Functions using Lolinear Transformation and 
Regression for Example 10
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Selection and Fitting Reliability Models
– Nonlinear Model Estimation

• The model provided by Eqs. 60a and 60b is 
nonlinear with respect to time with three 
parameters.

• The parameters can be estimated, and errors can 
be analyzed using nonlinear regression analysis 
procedures.

• The estimation of nonlinear model parameters can 
be essentially based on using numerical 
optimization methods. 

Empirical Reliability Analysis 
Using Life Data
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Selection and Fitting Reliability Models
– Nonlinear Model Estimation (cont’d)

• The parameter estimates can be obtained using the 
quasi Newton method of optimization.

• A numerical algorithm can be advised for this 
purpose, or commercially available software, such 
as STATISTICA and its Nonlinear Estimation
procedure, can be used.

• Example 4.12 and 13 of your Textbook illustrate 
the nonlinear estimation procedures.

Empirical Reliability Analysis 
Using Life Data
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Selection and Fitting Reliability Models
– Probability Plotting

• Probability plots are visual representations that 
show reliability data and preliminary estimation of 
assumed TTF distribution parameters, by graphing 
transformed values of an empirical survivor function 
(or CDF) versus time (or transformed time) on a 
specially constructed probability paper.

• Reliability data that follow the underlying 
distribution of a probability paper type will fall on a 
straight line. 

Empirical Reliability Analysis 
Using Life Data
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Example 14: Probability Plotting of Weibull
Distribution for the Data of Example 8
– A transformation of the reliability Weibull

function can be developed by taking the 
logarithm of the reliability function of Eq. 39 
twice as follows:

Empirical Reliability Analysis 
Using Life Data

αββ lnln
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tR (62)
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Example 14 (cont’d)
– Let

– y is therefore linear in x with slope β.
– Replacing R(t) by the respective empirical 

survivor function, i.e., Sn(t), a linear regression 
procedure can be used to fit the following line 
to the transformed data:

Empirical Reliability Analysis 
Using Life Data
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Example 14 (cont’d)

– The distribution parameters can be estimated 
as follows:

– The values of these estimates for the data of 
Example 8 are

Empirical Reliability Analysis 
Using Life Data

y(x) = bx + a

β = b and α = exp(-a/β)

β = 0.5554
α = 1543246.1
a= -7.91411
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Example 14 (cont’d)
– The fitted reliability function and the respective 

empirical survivor function are given in Table 
13.

– The respective probability plot is given in 
Figure 10.

– The sum of the squared residuals for the 
Weibull distribution fitted using the probability 
paper is 0.000000271, which is worse 
compared to 0.000000128 based on the 
nonlinear estimation in Example 4-13 of the 
textbook.

Empirical Reliability Analysis 
Using Life Data
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0.9981260.9979841192003
0.9981810.9980361182002
0.9982380.9980872172001
0.9982970.9981901162000
0.9983560.9982412151999
0.9984180.9983432141998

-1.00000000
1984

Probability 
Paper Fitted 
Reliability 
Function

Survivor 
Function for 

Failure Mode1 
(Strength)

Number of 
Occurrences of 
Failure Mode 1 

(Strength)

Time to 
Failure
(Years)

Year

Empirical Reliability Analysis 
Using Life Data

M

Table 13. Empirical Survivor Function, Sn(t), and Fitted Weibull Reliability 
Function Using Probability Paper for Example 14  

M M M M
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Example 14 (cont’d)

Empirical Reliability Analysis 
Using Life Data
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Figure 10. Weibull Probability Paper Plotting for Example 14
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Selection and Fitting Reliability Models
– Assessment of Hazard Functions

• Once the parameters of underlying life distributions 
are known, i.e., estimated, assessing the 
cumulative hazard function (CHRF) and hazard 
(failure) rate function is reduced to applying Eq. 46 
and 47, respectively.

• Two examples of the hazard functions calculations 
are provided for demonstration purposes:

– Reliability function with a polynomial CHRF (Eq. 60)
– Based on the Weibull reliability function from Example 14  

Empirical Reliability Analysis 
Using Life Data
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Example 15: Hazard Function Assessment 
from a Polynomial Cumulative Hazard 
Function
– Example 4-12 demonstrated the development 

of a polynomial cumulative hazard function 
from reliability data.

– The resulting reliability function expressed 
according to Eq. 60 with the estimated 
parameters is as follows:

Empirical Reliability Analysis 
Using Life Data

R(t) = exp(-0.262649 + 0.013915t – 0.000185t2) 
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Example 15 (cont’d)  
– Using Eq. 46, the CHRF is

where t is time in years.
– The respective hazard (failure) rate function is 

the derivative of H(t), as provided by Eq. 47, 
therefore it can be written as

Empirical Reliability Analysis 
Using Life Data

H(t) = 0.262649 - 0.013915t + 0.000185t2

h(t) = - 0.013915 + 0.000370t
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Example 15 (cont’d)
– The results of these calculations are given in 

Table 14 and Figure 11.
– Taking into account that the hazard rate 

functions are used for projections, the table 
covers years from 1990 till 2010.

– It can be observed from the figure that the 
hazard (failure) rate function is increasing in 
time, which shows aging of the given 
equipment.

Empirical Reliability Analysis 
Using Life Data
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Example 15 (cont’d)

Empirical Reliability Analysis 
Using Life Data

0.2327190.013095732010

0.2198090.012725722009

0.2072690.012355712008

0.1950990.011985702007

0.0063690.001995431980

Cumulative Hazard
Rate Function

Hazard Rate
Function

Time to Failure
(Years)

Year

M M M M

Table 14. Hazard (Failure) Rate and Cumulative Hazard Rate Functions for Reliability 
Function with a Polynomial CHRF for Example 4-12 Data and Example 15 Computations  
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Example 15 (cont’d)

Empirical Reliability Analysis 
Using Life Data

0.00
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0.15

0.20
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Time to Failure (Years)

CHRF

HRF

Figure 11. Cumulative Hazard Rate Function (CHRF) and Hazard 
Rate Function (HRF) for Example 15
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Example 16: Assessing the Hazard 
Function for the Weibull Distribution
– This example is based on the Weibull

reliability function obtained using probability 
plotting in Example 14.

– The Weibull CHRF H(t) is given by Eq. 52 and 
the respective hazard (failure) rate function 
h(t) by Eq. 51.  

Empirical Reliability Analysis 
Using Life Data
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Example 16 (cont’d): Assessing the Hazard 
Function for the Weibull Distribution
– Using these equations and the estimates of the 

distribution parameters from Example 14, the 
following expressions for H(t) and h(t) can be 
obtained: 

Empirical Reliability Analysis 
Using Life Data

H(t) = (t/1543246.1)0.5554

h(t) = (0.5554/1543246.1)( t/1543246.1)0.5554 – 1

= 3.60x10-7(t/1543246.1)-0.4446
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Example 16 (cont’d)
– The resulting hazard functions are given in 

Table 15.
– Contrary to the previous example, the hazard 

(failure) rate function in this case is decreasing 
in time, which shows that the given unit is 
improving with respect to failure mode 1 which 
might not be realistic.

– If it is not realistic, a different probability
distribution should be considered.

Empirical Reliability Analysis 
Using Life Data
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Example 16 (cont’d)

0.0022334.76927E-05262010

0.0021854.85316E-05252009

0.0021364.94205E-05242008

0.0003660.00020302511985

Cumulative Hazard 
Rate Function

Hazard Rate 
Function

Time to Failure
(Years)

Year

Empirical Reliability Analysis 
Using Life Data

Table 15. Hazard (Failure) Rate and Cumulative Hazard Rate Functions for Weibull
Reliability Function for Example 14 Data and Example 16 Computations   

M M M M
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Bayesian Methods

The procedures discussed in the previous 
sections are related to the so-called 
statistical inference.
Applying any of such procedures is usually 
associated with some assumptions, e.g., a 
sample is composed of uncorrelated 
identically distributed random variables.
The “identically distributed” property can be 
stated according to a specific distribution, 
e.g., the exponential or Weibull distribution.
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Bayesian Methods
Such an assumption sometimes is 
checked using appropriate hypothesis 
testing procedures.
Nevertheless, even if the corresponding 
hypothesis is not rejected, these 
characteristics cannot be taken with 
absolute certainty.
In the framework of statistics, data result 
from observations, tests, measurements, 
polls, etc.  These data can be viewed as 
objective information.
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Bayesian Methods

Types of Information
The types of information available to engineers 

can be classified as:
1. Objective information based on 

experimental results, or observations; and
2. Subjective information based on 

experience, intuition, other previous 
problems that are similar to the one under 
consideration, or the physics of the problem.
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Bayesian Methods

Bayesian Probabilities
– Problems with both objective and subjective

types of information.
– The subjective probabilities are assumed to 

constitute a prior knowledge about a 
parameter, with gained objective information 
(or probabilities).

– Combining the two type produces posterior 
knowledge.

– The combination is performed based on 
Bayes’ theorem.
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Bayesian Methods

Bayes’ Theorem
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Bayesian Methods

Example (cont’d):  Defective Products
– Consider Line 3 of the three manufacturing 

lines.
– The three lines manufacture 20%, 30%, and 

50% of the components, respectively.
– The quality assurance department of the 

producing factory determined that the 
probability of having defective products from 
lines 1, 2, and 3 are 0.1, 0.1, and 0.2, 
respectively.
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Bayesian Methods

Example (cont’d):  Defective Products
– The following events were defined:

– Therefore, the following probabilities are 
given:

L1 = Component produced by line 1
L2 = Component produced by line 2
L3 = Component produced by line 3
D = Defective component

P(D|L1)= 0.1
P(D|L2) = 0.1
P(D|L3) = 0.2
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Bayesian Methods

Example (cont’d):  Defective Products
– Since these events are not independent, the 

joint probabilities can be determined as 
follows:

1.0)5.0(2.0)P(L)L|P(D)LP(D

03.0)3.0(1.0)P(L)L|P(D)LP(D

02.0)2.0(1.0)P(L)L|P(D)LP(D

333

222

111

===

===

===

I

I

I
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Bayesian Methods

Example (cont’d):  Defective Products
– The theorem of total probability can be used to 

determine the probability of a defective 
component as follows:

– Therefore, on the average, 15% of the 
components produced by the factory are 
defective.

P(D) = P(D|L1) P(L1) + P(D|L2) + P(D|L3) P(L3)
= 0.1(0.2) + 0.1(0.3) + 0.2(0.5) = 0.02 + 0.03 + 0.1
= 0.15
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Bayesian Methods
Example (cont’d):  Defective Products
– Because of the high contribution of Line 3 to 

the defective probability, a quality assurance 
engineer subjected the line to further analysis.

– The defective probability for Line 3 was 
assumed to be 0.2.  An examination of the 
source of this probability revealed that it is 
subjective, and also is uncertain.

– A better description of this probability can be 
as shown in a figure in the form of a prior 
discrete distribution for the probability.  The 
distribution is called PP(p).
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Bayesian Methods
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The mean probability p based on this distribution is:

p = 0.05(0.05)+0.1(0.05)+0.15(0.3)+0.2(0.2)+0.25(0.3)+0.3(0.1)
0.1975

which is approximately 0.2.

Example (cont’d):
Defective Products
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Bayesian Methods

Example (cont’d):  Defective Products
– Now assume that a component from Line 3 

was tested and found to be defective, the 
subjective prior distribution needs to be 
revised to reflect the new (objective) 
information.

– The revised distribution is called the posterior 
distribution (P´P(p)), and can be computed as 
follows:
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Bayesian Methods

Example (cont’d):  Defective Products
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Bayesian Methods

Example (cont’d):  Defective Products
– The resulting probabilities add up to 1. The 

mean probability p based on the posterior 
distribution is:

P = 0.05(0.012658) + 0.1(0.025316)
+ 0.15(0.227848) + 0.2(0.202532)
+ 0.25(0.379747) + 0.3(0.151899)

= 0.218354
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Bayesian Methods

Example (cont’d):  Defective Products
– The posterior mean probability (0.218354) is 

larger than the prior mean probability (0.1975).  
The increase is due to the detected failure 
from the test.

– Now assume that a second component from 
Line 2 was tested and found to be defective, 
the posterior distribution needs to be revised 
to reflect the new (objective) information.  The 
revised posterior distribution builds on the 
current posterior distribution, treating it as a 
prior distribution.
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Bayesian Methods
Example (cont’d):  Defective Products

Probability Prior Post. 1D Post. 2D Post. 3D Post. 4D Post. 5D Post. 6D Post. 7D Post. 8D Post. 9D Post. 10D
0.05 0.05 0.012658 0.002899 0.061036 0.014622 0.003064 0.00596 0.000111 2E-05 3.55E-06 6.2E-07
0.1 0.05 0.025316 0.011594 0.121008 0.057978 0.024302 0.009456 0.003518 0.001271 0.00045 0.000157
0.15 0.3 0.227848 0.156522 0.154897 0.111324 0.069992 0.040852 0.022796 0.012356 0.006565 0.003439
0.2 0.2 0.202532 0.185507 0.199432 0.191108 0.160205 0.124675 0.092763 0.067037 0.047492 0.033174
0.25 0.3 0.379747 0.434783 0.172995 0.207218 0.217138 0.211225 0.19645 0.177461 0.157151 0.137217
0.3 0.1 0.151899 0.208696 0.290632 0.417751 0.525299 0.613196 0.684362 0.741855 0.788339 0.826012
Average, p 0.1975 0.218354 0.233188 0.208712 0.238579 0.256997 0.268803 0.27675 0.282311 0.286318 0.289274
Normalizing 0.8525 0.831646 0.816812 0.841288 0.811421 0.793003 0.781197 0.77325 0.767689 0.763682 0.750726
Factor, ND

The last row of the table is the normalizing factor for 
cases where a non-defective component results from a 
test.  The factor in this case is denoted ND in the table.  
For example, the normalizing factor (ND) in case of a non-
defective test according to the prior distribution is:
ND = 0.05(1-0.05) + 0.1(1-0.05) + 0.15(1-0.3) + … + (0.3)(1-
0.1) = 0.8525
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Bayesian Methods
Example (cont’d):  Defective Products
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Bayesian Methods
Example (cont’d):  Defective Products
– If the next 8 tests result in one nondefective

and seven defective components, the resulting 
posterior distributions are shown in the table.

– It can be observed from the figure that the 
average probability is approaching 0.3 as 
more and more defective tests are obtained.

– The average probability cannot exceed 0.3 
because the prior distribution has zero 
probability values for p values larger than 0.3.

– Also, the effect of a non-defective component 
on the posterior probabilities can be seen in 
this figure.


