
1

• A. J. Clark School of Engineering •Department of Civil and Environmental Engineering

CHAPTER

4a
CHAPMAN
HALL/CRC

Risk Analysis in Engineering and Economics

Risk Analysis for Engineering
Department of Civil and Environmental Engineering

University of Maryland, College Park

RELIABILITY  ASSESSMENT

CHAPTER 4a.  RELIABILITY ASSESSMENT Slide No. 1

Introduction

“The reliability of an engineering 
system can be defined as its 
ability to fulfill its design purpose 
defined as performance 
requirements for some time period 
and environmental conditions.  
The theory of probability provides 
the fundamental bases to measure 
this ability.” 



2

CHAPTER 4a.  RELIABILITY ASSESSMENT Slide No. 2

Introduction

The reliability assessment methods can 
be based on

1. Analytical strength-and-load performance 
functions, or

2. Empirical life data.
They can also be used to compute the 
reliability for a given set of conditions that 
are time invariant or for a time-dependent 
reliability.
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Introduction
The reliability of a component or system can 
be assessed in the form of a probability of 
meeting satisfactory performance 
requirements according to some 
performance functions under specific 
service and extreme conditions within a 
stated time period.
Random variables with mean values, 
variances, and probability distribution 
functions are used to compute probabilities.
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Analytical Performance-Based 
Reliability Assessment

First-Order Second Moment (FOSM) 
Method.
Advanced Second Moment Method
Computer-Based Monte Carlo Simulation
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method

Demand -Supply ),,,( 21 == nXXXZZ K

Z Z X X Xn= =( , , , )1 2 K Structural strength - Load effect

R-LXXXZZ n == ),,,( 21 K

(1a)

(1b)

(1c)

Z = performance function of interest
R = the resistance or strength or supply
L = the load or demand as illustrated in Figure 1
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Analytical Performance-Based 
Reliability Assessment

Load Effect (L)

Strength (R)

Density Function

Origin 0 Random Value

Failure Probability
(Area for g < 0)

Performance
Function (Z)

Figure 1. Performance Function for Reliability Assessment
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Analytical Performance-Based 
Reliability Assessment
Advanced Second-Moment Method
– The failure surface (or the limit state) of 

interest can be defined as Z = 0.
– When Z < 0, the element is in the failure state, 

and when Z > 0 it is in the survival state.
– If the joint probability density function for the 

basic random variables   ’s is                            
, then the failure probability Pf of the element 
can be given by the integral

∫ ∫= nnXXXf dxdxdxxxxfP
n

KKL K 2121,,, ),,,(
21

(2)
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Where the integration is performed over the 

region in which Z < 0.
– In general, the joint probability density function 

is unknown, and the integral is a formidable 
task.

– For practical purposes, alternate methods of 
evaluating Pf are necessary.  Reliability is 
assessed as one minus the failure probability.
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Reliability Index

• Instead of using direct integration (Eq. 2), 
performance function Z in Eq. 1 can be expanded 
using Taylor series about the mean value of Xs and 
then truncated at the linear terms.  Therefore, the 
first-order approximation for the mean and variance 
are as follows:
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Reliability Index (cont’d)

Where
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Reliability Index (cont’d)

• For uncorrelated random variables, the variance 
cab be expressed as

• The reliability index β can be computed from:
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If z is assumed normally distributed.
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Analytical Performance-Based 
Reliability Assessment

Load (L)

Strength or Resistance (R)

Failure Region
L > R

Survival Region
L < R

Limit State
L = R

Figure 2. Performance Function for a Linear, Two-Random Variable Case
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Advanced Second-Moment Method
– Nonlinear Performance Functions

• For nonlinear performance functions, the Taylor 
series expansion of Z in linearized at some point on 
the failure surface referred to as the design point
or checking point or the most likely failure point
rather than at the mean.

• Assuming Xi variables are uncorrelated, the 
following transformation to reduced or normalized 
coordinates can be used:

Analytical Performance-Based 
Reliability Assessment
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Advanced Second-Moment Method
– Nonlinear Performance Functions (cont’d)

• It can be shown that the reliability index β is the 
shortest distance to the failure surface from the 
origin in the reduced Y-coordinate system.

• The shortest distance is shown in Figure 3, and the 
reduced coordinates are

Analytical Performance-Based 
Reliability Assessment

L

LR
R

L
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L YY

σ
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σ
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+= (8b)
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Analytical Performance-Based 
Reliability Assessment

Figure 3. Performance Function for a Linear, Two-Random Variable Case
in Normalized Coordinates
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Advanced Second-Moment Method
– Nonlinear Performance Functions (cont’d)

• The concept of the shortest distance applies for a 
nonlinear performance function, as shown in Figure 
4.

• The reliability index β and the design point,

can be determined by solving the following system 
of nonlinear equations iteratively for β: 

Analytical Performance-Based 
Reliability Assessment

),,,( **
2

*
1 nXXX K
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β

Limit State in Reduced
Coordinates

R = Resistance or Strength
L = Load Effect

L

L
L

LY
σ
µ−

=

R

R
R

RY
σ
µ−

=

Design or
Failure Point

Analytical Performance-Based 
Reliability Assessment

Figure 4. Performance Function for a Nonlinear, Two-Random Variable
Case in Normalized Coordinates
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Advanced Second-Moment Method
– Nonlinear Performance Functions (cont’d)

Analytical Performance-Based 
Reliability Assessment

Xi X i Xi i
* = −µ α βσ

Z X X X n( , , , )* * *
1 2 0K =

(9)

(10)

(11)
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Advanced Second-Moment Method
– Nonlinear Performance Functions (cont’d)

• Where αi is the directional cosine, and the partial 
derivatives are evaluated at the design point.

• Eq. 6 can be used to compute Pf.
• However, the above formulation is limited to 

normally distributed random variables.
• The directional cosines are considered as measure 

of the importance of the corresponding random 
variables in determining the reliability index β.

Analytical Performance-Based 
Reliability Assessment
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Advanced Second-Moment Method
– Nonlinear Performance Functions (cont’d)

• Also, partial safety factors γ that are used in load 
and resistance factor design (LRFD) can be calculated 
from

• Generally, partial safety factors take on values 
larger than 1 loads, and less than 1 for strengths.

Analytical Performance-Based 
Reliability Assessment

γ
µ

=
X

X

*
(12)
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Equivalent Normal Distributions

• If a random variable X is not normally distributed, 
then it must be transformed to an equivalent 
normally distributed random variable.

• The parameters of the equivalent normal 
distribution are

• These parameters can be estimated by imposing 
two conditions.

N
X

N
X ii

σ          and       µ
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Equivalent Normal Distributions (cont’d)

First condition can be expressed as

Second condition can be expressed as
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Equivalent Normal Distributions (cont’d)

where
Fi = non-normal cumulative distribution function

fi = non-normal probability density function

Φ = cumulative distribution function of the standard
normal variate

φ = probability density function of the standard
normal variate.
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Analytical Performance-Based 
Reliability Assessment

Advanced Second-Moment Method
– Equivalent Normal Distributions (cont’d)

• The standard deviation and mean of equivalent 
normal distributions are give by

(14a)

(14b)
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Advanced Second-Moment Method
– Equivalent Normal Distributions (cont’d)

• Once       and         are determined for each random 
variable, β can be solved following the same 
procedure of Eqs. 9 through 11.

• The advanced second moment (ASM) method can 
deal with

– Nonlinear performance function, and
– Non-normal probability distributions

Analytical Performance-Based 
Reliability Assessment

N
X i

σ N
X i

µ
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Advanced Second-Moment Method
– Correlated Random Variables

• A correlated (and normal) pair of random variables 
X1 and X2 with a correlation coefficient ρ can be 
transformed into noncorrelated pair Y1 and Y2 by 
solving for two eigenvalues and the corresponding 
eigenvectors as follows:

Analytical Performance-Based 
Reliability Assessment
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• where               .  The resulting Y variables are 
noncorrelated with respective variances that are 
equal to the eigenvalues (λ) as follows:

Analytical Performance-Based 
Reliability Assessment
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• For a correlated pair of random variables, Eqs. 9 
and 10, have to be revised, respectively, to

Analytical Performance-Based 
Reliability Assessment
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and

where the partial derivatives are evaluated at the 
design point.

Analytical Performance-Based 
Reliability Assessment

(18a)

(18b)

( )X tX X Y Y1 1 21 1 1 2
* = − +µ σ β α λ α λ

( )X tX X Y Y2 1 22 2 1 2
* = − −µ σ β α λ α λ
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Advanced Second-Moment Method
– Numerical Algorithms

• The advanced second moment (ASM) method can 
be used to assess the reliability of a structure 
according to nonlinear performance function that 
may include non-normal random variables.

• Implementation of the method require efficient and 
accurate numerical algorithms.

• The ASM algorithms are provided in the following 
two flowcharts for

– Noncorrelated random variables (Case a)
– Correlated random variables (Case b)

Analytical Performance-Based 
Reliability Assessment
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Case a:
Non-correlated Random
Variables

Start

Assign the mean value for each random variable
as a starting point value:

Compute the standard deviation and mean of the equivalent normal
distribution for each non-normal random variable using Eqs. 13 and 14

 Compute the partial derivative           for each RV using Eq. 9.

 Compute the directional cosine     for each random variable
as given in Eq. 9 at the design point.

 Compute the reliability index
substitute Eq. 10 into Eq. 11
satisfy the limit state Z = 0 in Eq. 11
use a numerical root-finding method.

Take      value

End

( ) ( )
nXXXnXXX µµµ ,,,,,,

21

**
2

*
1 LL =

iX
Z

∂
∂

converges?
No Yes

iα

β

 Compute a new estimate of the design point by substituting the
resulting      obtained in previous step into Eq. 10β

β

β
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Case b:
Correlated Random
Variables

Start

Assign the mean value for each random variable
as a starting point value:

Compute the standard deviation and mean of the equivalent normal
distribution for each non-normal random variable using Eqs. 13 and 14

 Compute the partial derivative           for each RV using Eq. 9.

 Compute the directional cosine     for each random variable
as given in Eq. 9 at the design point.  For correlated

pairs of random variables Eq. 17 should be used

 Compute the reliability index    :
substitute Eq. 10 (for noncorrelated) and Eq. 18 (for correlated) into Eq. 11
satisfy the limit state Z = 0 in Eq. 11
use a numerical root-finding method.

Take      value

End

( ) ( )
nXXXnXXX µµµ ,,,,,,

21

**
2

*
1 LL =

iX
Z

∂
∂

converges?
No Yes

iα

β

 Compute a new estimate of the design point by substituting the
resulting      obtained in previous step into Eq. 10 (for
noncorrelated) and Eq. 18 (for correlated)

β

β

β
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Example 1: Reliability Assessment Using a 
Nonlinear Performance Function

• The strength-load performance function for a 
components is assumed to have the following form:

where X’s are basic random variables with the 
following probabilistic characteristics:

Analytical Performance-Based 
Reliability Assessment

321 XXXZ −=

Random 
Variable 

Mean Value 
(µ) 

Standard 
Deviation (σ) 

Coefficient of 
Variation 

Case (a)  
Distribution 
Type 

Case (b)  
Distribution 
Type 

X1 1 0.25 0.25 Normal Lognormal 
X2 5 0.25 0.05 Normal Lognormal 
X3 4 0.80 0.20 Normal Lognormal 
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Using first-order reliability analysis based on first-
order Taylor series, the following can be obtained 
from Eqs. 3 to 5:

Analytical Performance-Based 
Reliability Assessment

3254)5)(1( =−=−≅Zµ

2903.104.00625.05625.1      

)8.0()4/5.0()25.0()1()25.0()5( 222222
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−++≅Zσ

325.2
2903.1
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==≅
Z
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σ
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• These values are applicable to both cases (a) and 
(b).  Using advanced second-moment reliability 
analysis, the following table can be constructed for 
cases (a) and (b):

Analytical Performance-Based 
Reliability Assessment

Random 
Variable 

Failure Point
iX

iX
Z σ

∂
∂  

Directional 
Cosines (α) 

X1  1.000E+00 1.250E+00 9.687E-01
X2 5.000E+00 2.500E-01 1.937E-01
X3 4.000E+00 -2.000E-01 -1.550E-01

 

Case (a): Iteration 1
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• The derivatives in the above table are evaluated at 
the failure point.  The failure point in the first 
iteration is assumed to be the mean values of the 
random variables.

• The reliability index can be determined by solving 
for the root according to Eq. 11 for the limit state of 
this example using the following equation:

Analytical Performance-Based 
Reliability Assessment Case (a): Iteration 1

( )( ) 0
332211 321 =−−−−= XXXXXXZ βσαµβσαµβσαµ
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 2.37735 for this iteration.

Analytical Performance-Based 
Reliability Assessment

iX
iX

Z σ
∂
∂

-1.555E-01-1.930E-014.295E+00X3

8.547E-021.061E-014.885E+00X2

9.841E-011.221E+004.242E-01X1

Directional 
Cosines (a)

Failure PointRandom 
Variable

Case (a): Iteration 2
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 2.3628 for this iteration.

Analytical Performance-Based 
Reliability Assessment

iX
iX

Z σ
∂
∂

-1.536E-01-1.930E-014.294E+00X3

8.329E-021.047E-014.950E+00X2

9.846E-011.237E+004.187E-01X1

Directional 
Cosines (α)

Failure PointRandom 
Variable

Case (a): Iteration 3
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 2.3628 for this iteration which means 
that β has converged to 2.3628.

• The failure probability =1-Φ(β) = 0.009068.
• The partial safety factors can be computed as:

Analytical Performance-Based 
Reliability Assessment

1.0725974.290389X3

0.990174.950849X2

0.4183780.418378X1

Partial Safety 
Factors

Failure PointRandom 
Variable
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function
– Case (b)

• The parameters of the lognormal distribution can 
be computed for three random variables based on 
their respective means (µ) and deviations (σ) as 
follows:

Analytical Performance-Based 
Reliability Assessment




















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2
2 1ln

X

X
Y µ

σσ ( ) 2

2
1ln YXY σµµ −=and

CHAPTER 4a.  RELIABILITY ASSESSMENT Slide No. 41

Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• The results of these computations are summarized 
as follows:

Analytical Performance-Based 
Reliability Assessment

0.201.366684005LognormalX3

0.049968791.608189472LognormalX2

0.24622068-0.03031231LognormalX1

Second 
Parameter (σY)

First 
Parameter (µY)

Distribution 
Type

Random 
Variable
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

Analytical Performance-Based 
Reliability Assessment

N
X

i
iX

Z σ
∂
∂

-1.557E-01-1.980E-013.922E+007.922E-014.000E+00X3

1.965E-012.498E-014.994E+002.498E-015.000E+00X2

9.681E-011.231E+009.697E-012.462E-011.000E+00X1

Directional 
Cosines (α)

Mean
Value

Standard 
Deviation

Failure PointRandom 
Variable

Equivalent Normal
Case (b): Iteration 1
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• The derivatives in the above table are evaluated at 
the failure point.  The failure point in the first 
iteration is assumed to be the mean values of the 
random variables.

• The reliability index can be determined by solving 
for the root according to Eq. 11 for the limit state of 
this example using the following equation:

Analytical Performance-Based 
Reliability Assessment

( )( ) 0
332211 321 =−−−−= N

X
N
X

N
X

N
X

N
X

N
XZ βσαµβσαµβσαµ
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 2.30530 for this iteration.  

Analytical Performance-Based 
Reliability Assessment

N
X

i
iX

Z σ
∂
∂

-3.667E-01-2.031E-013.912E+008.330E-014.206E+00X3

1.850E-011.025E-014.992E+002.439E-014.881E+00X2

9.118E-015.050E-017.718E-011.035E-014.202E-01X1

Directional 
Cosines (α)

Mean
Value

Standard 
Deviation

Failure 
Point

Random 
Variable

Equivalent Normal
Case (b): Iteration 2
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 3.3224 for this iteration.  

Analytical Performance-Based 
Reliability Assessment

N
X

i
iX

Z σ
∂
∂

Case (b): Iteration 3

-3.667E-01-2.198E-013.803E+009.758E-014.927E+00X3

1.850E-011.109E-014.991E+002.420E-014.843E+00X2

9.118E-015.465E-018.020E-011.129E-014.584E-01X1

Directional 
Cosines (α)

Mean
Value

Standard 
Deviation

Failure PointRandom 
Variable

Equivalent Normal
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 3.3126 for this iteration.  

Analytical Performance-Based 
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X
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Z σ
∂
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Case (b): Iteration 4

-3.667E-01-2.212E-013.789E+009.880E-014.989E+00X3

1.850E-011.116E-014.991E+002.420E-014.843E+00X2

9.118E-015.499E-018.041E-011.136E-014.612E-01X1

Directional 
Cosines (α)

Mean
Value

Standard 
Deviation

Failure PointRandom 
Variable

Equivalent Normal
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 3.3125 for this iteration.  

Analytical Performance-Based 
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X
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iX

Z σ
∂
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Case (b): Iteration 5

-3.667E-01-2.212E-013.789E+009.880E-014.989E+00X3

1.850E-011.116E-014.991E+002.420E-014.843E+00X2

9.118E-015.500E-018.041E-011.136E-014.612E-01X1

Directional 
Cosines (α)

Mean
Value

Standard 
Deviation

Failure PointRandom 
Variable

Equivalent Normal
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Example 1 (cont’d): Reliability Assessment 
Using a Nonlinear Performance Function

• Therefore, β = 3.3125 for this iteration which 
means that β has converged to 3.3125.

• The failure probability =1-Φ(β) = 0.0004619.
• The partial safety factors can be computed as:  

Analytical Performance-Based 
Reliability Assessment

1.2472424.988968X3

0.9686274.843135X2

0.4611890.461189X1

Partial Safety 
Factors

Failure PointRandom 
Variable
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Monte Carlo Simulation Methods
– Monte Carlo simulation (MCS) techniques are 

basically sampling processes that are used to 
estimate the failure probability of a component 
or system.

– The basic random variables in Eq. 1, that is

are randomly generated and substituted into 
above equation.

Analytical Performance-Based 
Reliability Assessment
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Monte Carlo Simulation Methods
– Then the fraction of the cases that resulted in 

failure are determined to assess the failure 
probability.

– Three methods are described herein:
1. Direct Monte Carlo Simulation
2. Conditional Expectation
3. The Importance Sampling Reduction Method

Analytical Performance-Based 
Reliability Assessment
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Monte Carlo Simulation Methods
– Direct Monte Carlo Simulation Method

• In this method, samples of the basic noncorrelated
variables  are drawn according to their 
corresponding probabilities characteristics and fed 
into performance function Z as given by Eq. 1.

• Assuming that Nf is the number of simulation cycles 
for which Z < 0 in N simulation cycles, then an 
estimate of the mean failure probability can be 
expressed as

Analytical Performance-Based 
Reliability Assessment

N
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P f
f = (19)
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Monte Carlo Simulation Methods
– Direct Monte Carlo Simulation Method (cont’d)

• The variance of the estimated failure probability 
can be approximately computed using the variance 
expression for a binomial distribution as:

• Therefore, the coefficient of variation (COV) of the 
estimated failure probability is

Analytical Performance-Based 
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Monte Carlo Simulation Methods
– Direct Monte Carlo Simulation Method (cont’d)

• Some of the advantages of this method is that it is 
easy to implement and understand.

• The disadvantages include:
– Expensive in some cases, especially if the failure 

probabilities are small.
– Inefficient

• The importance sampling method (IS) is described 
later for the purpose of increasing the efficiency of 
the is method.

Analytical Performance-Based 
Reliability Assessment
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Monte Carlo Simulation Methods
– Conditional Expectation

• This method can also be used to estimate the 
failure probability according to the performance 
function of Eq. 1.

• The method requires generating all the basic 
random variables in Eq. 1 except the random 
variables with the highest variability (i.e., COV), 
which is used as a control variable, Xk.

• The conditional expectation is computed as the 
cumulative distribution function.

Analytical Performance-Based 
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Monte Carlo Simulation Methods
– Conditional Expectation (cont’d)

• For the following performance function:

and for a randomly generated value of L or R, the 
failure probability for each cycle is given, 
respectively, as

Analytical Performance-Based 
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Monte Carlo Simulation Methods
– Conditional Expectation (cont’d)

• In these equations, L and R are the control 
variables.  The total failure probability Pf can be 
estimated from

• Where N is the number of simulation cycles.
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Monte Carlo Simulation Methods
– Conditional Expectation (cont’d)

• The accuracy of Eq. 25 can be estimated through 
the variance and coefficient of variation as given by
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Monte Carlo Simulation Methods
– Importance Sampling (cont’d)

• To improve the efficiency of simulation when 
estimating the probability of failure for a given 
performance function, Importance Sampling (IS) 
techniques are used.

• In some performance function, if the margin of 
safety Z is large and its variance is too small, larger 
simulation effort will be required to obtain sufficient 
simulation runs with satisfactory performances, i.e.,

Analytical Performance-Based 
Reliability Assessment

smaller failure probabilities require larger number of simulation cycles
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Monte Carlo Simulation Methods
– Importance Sampling (cont’d)

• In this method, the basic random variables are 
generated according to some carefully selected 
probability distributions, i.e.,

With mean values that are closer to the design 
point than their original (actual) probability 
distributions.

Analytical Performance-Based 
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Importance density function, hX(x)
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Monte Carlo Simulation Methods
– Importance Sampling (cont’d)

• The fundamental equation for this method is given 
by

Analytical Performance-Based 
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N =  number of simulation cycles
fX(x1i,x2i, ..., xni)  =  original joint density function of the basic random variables

evaluated at the ith generated values of the basic random variables
hX(x1i,x2i, ..., xni) =  selected joint density function of the basic random variables evaluated at the

ith generated values of the basic random variables
I =  performance indicator function that takes values of either 0 for failure and 1  

for survival 
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Monte Carlo Simulation Methods
– Importance Sampling (cont’d)

• The coefficient of variation of the estimate failure 
probability can be based on the variance of a 
sample mean as follows:

Analytical Performance-Based 
Reliability Assessment

(29)
f

N

i
f

niiiX

niiiX
i

f P

P
xxxh
xxxf

I
NN

PCOV
∑ 










−

−
=

1=

2

21

21

) ..., ,,(
) ..., ,,(

 
)1(

1

)(



32

CHAPTER 4a.  RELIABILITY ASSESSMENT Slide No. 62

Monte Carlo Simulation Methods
– Correlated Random Variables

• A correlated (and normal) pair of random variables 
X1 and X2 with a correlation coefficient ρ can 
transformed using linear regression transformation 
as follows:

Analytical Performance-Based 
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X b b X2 0 1 1= + + ε (30a)

b0 = intercept of a regression line between X1 and X2
b1 = slope of the regression line
ε = random (standard) error with a mean of zero and a standard  

deviation as given in Eq. 30d).
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Monte Carlo Simulation Methods
– Correlated Random Variables (cont’d)

• These regression model parameters can be 
determined in terms of the probabilistic 
characteristics of X1 and X2 as follows::
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Monte Carlo Simulation Methods
– Correlated Random Variables (cont’d)

Procedure for a correlated pair of random 
variables:

1. Compute the intercept of a regression line 
between X1 and X2 (b0), the slope of the 
regression line (b1), and the standard deviation of 
the random (standard) error (ε) using Eqs. 30b to 
30d.

2. Generate a random (standard) error using a zero 
mean and a standard deviation as given by Eq. 
30d.

Analytical Performance-Based 
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Procedure for a correlated pair of random 
variables (cont’d):

3. Generate a random value for X1 using its 
probabilistic characteristics (mean and variance).

4. Compute the corresponding value of X2 as follows 
(based on Eq. 30a):
where b0 and b1 are computed in step 1; ε is a 
generated random (standard) error from step 2; 
and x1 is generated value from step 3.

5. Use the resulting random (but correlated) values 
of x1 and x2 in the simulation-based reliability 
assessment methods.

Analytical Performance-Based 
Reliability Assessment

x b b x2 0 1 1= + + ε
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Monte Carlo Simulation Methods
– Time-Dependent Reliability Analysis

• Several methods for analytical time-dependent 
reliability assessment are available.

• In these methods, significant structural loads as a 
sequence of pulses that can be described by a 
Poisson process with mean occurrence rate, λ, 
random intensity, S, and duration, τ.

• The limit state of the structure at any time can be 
defined as 

Analytical Performance-Based 
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R(t) - S(t) < 0 (31)
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Analytical Performance-Based 
Reliability Assessment

Monte Carlo Simulation Methods
– Time-Dependent Reliability Analysis (cont’d)

• where R(t) is the strength of the structure at time t
and S(t) is the loads at time t.

• The instantaneous probability of failure can then be 
defined at time t as probability of R(t) less than S(t).

• The reliability function, L(t), was defined as the 
probability that the structure survives during interval 
of time (0,t) as

drrfdtrtgFs
t

ttL
t

R )(]))((11[exp[)(
00
∫∫

∞
−−= λ (32a)
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Analytical Performance-Based 
Reliability Assessment

Monte Carlo Simulation Methods
– Time-Dependent Reliability Analysis (cont’d)

• where fR(r) is the probability density function of an 
initial strength, R, and g(t) is the time-dependent 
degradation in strength.

• The reliability can be expressed in terms of the 
conditional failure rate or hazard function, h(t) as

h t d
dt

L t( ) ln ( )= −

])(exp[)(
0
∫−=
t

dhtL ξξ

or
(32b)

(32c)
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Analytical Performance-Based 
Reliability Assessment

Monte Carlo Simulation Methods
– Time-Dependent Reliability Analysis (cont’d)

• The reliability L(t) is based on the complete survival 
during the service life interval (0,t).

• It means the probability of successful performance 
during a service life interval (0,t).

• Therefore, the probability of failure, Pf(t), can be 
computed as the probability of the complementary 
event, i.e., Pf(t) = 1 - L(t) being not equivalent to 
P[R(t) < S(t)]. 
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Empirical Reliability Analysis 
Using Life Data

Failure and Repair
– The basic notion of reliability analysis based 

on life data is time to failure.
– The useful life of a product can be measured 

in terms of its time to failure.
– In addition to time, other possible exposure 

measures include the number of cycles to 
failure of mechanical, electrical, temperature 
or humidity.
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Empirical Reliability Analysis 
Using Life Data

Failure and Repair (cont’d)
– If the failed product is subject to repair or 

replacement, it is called repairable (in opposite 
to non-repairable objects).

– The respective repair or replacement requires 
some time to get done, which is called time to 
repair/replace

– The time to failure is used for the non-
repairable components or systems.
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Empirical Reliability Analysis 
Using Life Data

Failure and Repair (cont’d)
– For repairable products, there is another 

important characteristic, which is called time 
between failures.

– This is another random variable or a set of 
random variables.

– It can be assumed that the time to the first 
failure is the same random variable as the 
time between the first and the second failures, 
the time between the second and the third 
failures, and so on.
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Empirical Reliability Analysis 
Using Life Data

Types of Data
– Failure data often contain not only times to 

failure (the so-called distinct failures), but also 
times in use (or exposure length of time) that 
do not terminate with failures.

– Such exposure time intervals terminating with 
non-failure are called times to censoring
(TTC).

– Therefore, life data of equipment can be 
classified into two types, complete and 
censored data 
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Empirical Reliability Analysis 
Using Life Data

Types of Data (cont’d)
– Failure data often contain not only times to 

failure (the so-called distinct failures), but also 
times in use (or exposure length of time) that 
do not terminate with failures.

– Such exposure time intervals terminating with 
non-failure are called times to censoring
(TTC).

– Therefore, life data of equipment can be 
classified into two types, complete and 
censored data.
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Empirical Reliability Analysis 
Using Life Data

Types of Data (cont’d)
– The complete life data are commonly based 

on equipment tested to failure or times to 
failure based on equipment use, i.e., field 
data.

– Censored life data include some observation 
results that represent only lower or upper 
limits on observation of times to failure.
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Empirical Reliability Analysis 
Using Life Data

Types of Data (cont’d)
– Censored data can be further classified into

• Type I or
• Type II

– Type I data are based on observations of a life 
test, which for economical or other reasons, 
must be terminated at specified time t0.

– As the result, only the lifetimes of those units 
that have failed before t0 are known exactly. 
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Empirical Reliability Analysis 
Using Life Data

Types of Data (cont’d)
– If, during the time interval (0, t0], s out of n

sample units failed, then the information in the 
data set obtained consists of s observed, 
ordered times to failure as follows:

– and the information that (n – s) units have 
survived the time t0.

t1 < t2 < . . .< ts (33a)
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Empirical Reliability Analysis 
Using Life Data

Types of Data (cont’d)
– In some life data testing, testing is continued 

until a specified number of failures r is 
achieved, i.e., the respective test or 
observation is terminated at the rth failure.

– In this case, r is not random.
– This type of testing, i.e., observation or field 

data collection, results in Type II censoring.
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Empirical Reliability Analysis 
Using Life Data

Types of Data (cont’d)
– It includes r observed ordered times to failure

– And the information that (n – r) units have 
survived the time tr.

– But, in opposite to Type I censoring, the test or 
observation duration tr is random, which 
should be taken into account in the respective 
statistical estimation procedures.

t1 < t2 < . . .< tr (33b)



41

CHAPTER 4a.  RELIABILITY ASSESSMENT Slide No. 80

Empirical Reliability Analysis 
Using Life Data

Types of Data (cont’d)
– In reliability engineering, Type I right-censored 

data are commonly encountered.
– Figure 5 shows a summary of these data 

types.
– Other types of data are possible such as 

random censoring. 
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Empirical Reliability Analysis 
Using Life Data

Life Data

Censored

Complete

Left

Right

Other

Type I

Type II

Other Types

Figure 5. Types of Life Data
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Example 2: Data of Distinct Failures
– In this example, the following complete sample 

of 19 times to failure for a structural 
component given in years to failure is provided 
for illustration purposes:

Empirical Reliability Analysis 
Using Life Data

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 42, 43, 50, 56
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Example 3: Right Censored Data
– In this example, tests of equipment are used 

for demonstration purposes to produce 
observations in the form of life data as given in 
Table 1.

– The data in the table provide an example of 
Type I censored data (the sample size is 12), 
with time to censoring equal to 51 years.

– If the data collection was assumed to 
terminate just after the 8th failure, the data 
would represent a sample of Type II right   

Empirical Reliability Analysis 
Using Life Data
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Example 3 (cont’d): Right Censored Data
censored data with the same sample size of 
12.

– The respective data are given in Table 2. 

Empirical Reliability Analysis 
Using Life Data

TTCTTCTTCTTCTTFTTFTTFTTFTTFTTFTTFTTFTTF or TTC

51515151464037311815147Time (Years)

121110987654321Time Order 
Number

Table 1. Example of Type I Right Censored Data (in Years) for Equipment

TTF = time to failure, and TTC = time to censoring
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Example 3 (cont’d): Right Censored Data

Empirical Reliability Analysis 
Using Life Data

Table 2. Example of Type II Right Censored Data (in Years) for Equipment

TTCTTCTTCTTCTTFTTFTTFTTFTTFTTFTTFTTFTTF or TTC

46464646464037311815147Time (Years)

121110987654321
Time Order 

Number

TTF = time to failure, and TTC = time to censoring
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Example 4: Random Censoring
– Table 3 contains the time to failure data, in 

which two failure modes were observed.
– The data in this example were generated 

using Monte Carlo simulation.
– The simulation process is restarted once a 

failure occurs according to one of the modes 
at time t, making this time t for the other mode 
as a time to censoring.     

Empirical Reliability Analysis 
Using Life Data
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Example 4 (cont’d): Random Censoring

Empirical Reliability Analysis 
Using Life Data

Number of Occurrences of a Given 
Failure Mode 

Year TTF 
(Years) 

Strength (FM1) Fatigue (FM2) 
1984 1 0 0 
1985 2 7 0 
1986 3 6 0 
1987 4 3 0 
1988 5 0 0 
1989 6 1 7 
1990 7 1 12 
1991 8 0 20 
1992 9 1 36 
1993 10 1 47 
1994 11 5 61 
1995 12 3 33 
1996 13 1 74 
1997 14 2 65 
1998 15 2 58 
1999 16 2 44 

 

Partial Data Set From 20,000Simulation
Cycles for the Two Failure Modes of 
Strength and Fatigue for a Structural
Component

Table 3.


