

CHAPTER 44. RELIABILITY ASSESSMENT Analytical Performance-Based Reliability Assessment • Advanced Second-Moment Method $Z = Z(X_1, X_2, ..., X_n) =$ Supply - Demand (1a) $Z = Z(X_1, X_2, ..., X_n) =$ Structural strength - Load effect (1b) $Z = Z(X_1, X_2, ..., X_n) =$ R-L (1c) Z = performance function of interest R = the resistance or strength or supply L = the load or demand as illustrated in Figure 1

E. C.	CHAPTER 4a. RELIABILITY ASSESSMENT Slide No. 33								
- A.	Analytical Performance-Based								
	Reliability Assessment								
	■ <u>Ex</u>	ample 1:	Reliabili	ity Asses	sment U	Ising a			
	No	nlinear F	Performa	nce Fund	ction	Ū			
		• The strer	ngth-load pe	erformance	function for	а			
H		compone	ents is assu	med to have	e the follow	ing form:			
			$Z = X_1 X_1$	$X_2 - \sqrt{X_3}$					
		where X's	s are basic	random var	iables with	the			
		following	probabilisti	c characteri	istics:				
	Random	Mean Value	Standard	Coefficient of	Case (a)	Case (b)			
	Variable	(μ)	Deviation (σ)	Variation	Distribution	Distribution Type			
	X_1	1	0.25	0.25	Normal	Lognormal			
	X ₂	5	0.25	0.05	Normal	Ta ing form: the Case (b) Distribution Type Lognormal Lognormal			
	X ₃ 4 0.80			0.20	Normal	Lognormal			

No. 1	CHAPTER 4a. RELIABILITY ASSESSMENT Slide No. 35									
944	Analytical Performance-Based									
	Reliability Assessment									
	Example 1 (cont'd): Reliability Assessment									
	Usin	g a No	nlinear l	- Perform	nance Fi	unction				
	•	These va	lues are a	pplicable	to both cas	ses (a) and				
H	((b). Usin	ig advance	d second	-moment re	eliability				
	i	analysis,	the followi	ng table	can be con	structed for				
		cases (a)) and (b):							
			Case (a)	: Iteration	n 1					
		Random	Failure Point	ðΖ	Directional					
		Variable		$\overline{\partial X_i} \sigma_{X_i}$	Cosines (a)					
		X_{I}	1.000E+00	1.250E+00	9.687E-01					
		X_2	5.000E+00	2.500E-01	1.937E-01					
		X_3	4.000E+00	-2.000E-01	-1.550E-01					

E. C.	CHAP	TER 4a. RELIABII	LITY ASSESSMENT		Slide	No. 37					
944	Analytical Performance-Based										
	Reliability Assessment										
	Example 1 (cont'd): Reliability Assessment										
	ι	Jsing a N	Ionlinear P	erforman	ce Function						
		 Theref 	fore, $\beta = 2.377$	35 for this ite	eration.						
H				T ((* 0							
			Case (a)	Iteration 2							
		Random	Failure Point	$\frac{\partial Z}{\partial T}$	Directional						
		Variable		$\partial X_i \overset{\mathcal{O}}{} X_i$	Cosines (a)						
		X ₁	4.242E-01	1.221E+00	9.841E-01						
		<i>X</i> ₂	4.885E+00	1.061E-01	8.547E-02						
		X ₃	4.295E+00	-1.930E-01	-1.555E-01						

Analytical Performance-Based

Reliability Assessment

- Example 1 (cont'd): Reliability Assessment Using a Nonlinear Performance Function
 - Therefore, β = 2.3628 for this iteration.

Case (a): Iteration 5									
Random Variable	Failure Point	$rac{\partial Z}{\partial X_i}\sigma_{X_i}$	Directional Cosines (α)						
X ₁	4.187E-01	1.237E+00	9.846E-01						
<i>X</i> ₂	4.950E+00	1.047E-01	8.329E-02						
X ₃	4.294E+00	-1.930E-01	-1.536E-01						

Case (a). Iteration 3

E.	CHAPTER 4a	. RELIABILITY A	ASSESSMENT		Slide No. 39				
. A.	Analytical Performance-Based								
	Reliability Assessment								
	■ <u>Exa</u>	mple 1 (cont'd): Re	liability Asses	sment				
	Usin	ig a Nor	linear Perf	ormance Fun	ction				
	•	Therefore	, β = 2.3628 fo	r this iteration whic	ch means				
H		that β has	converged to	2.3628.					
	•	The failure	e probability = ²	$1 - \Phi(\beta) = 0.009068.$					
	•	The partia	I safety factors	s can be computed	l as:				
		Random	Failure Point	Partial Safety					
		Variable		Factors					
		X ₁	0.418378	0.418378					
	X ₂ 4.950849 0.99017								
		X ₃	4.290389	1.072597	I				

En al	CHAP	TER 4a. RELIABIL	ITY ASSESSMENT		Slide No	. 41				
944	Analytical Performance-Based									
	Reliability Assessment									
	■ <u>E</u>	xample	1 (cont'd):	Reliability /	Assessment	t				
	L	Jsing a N	Ionlinear F	Performance	e Function					
11		 The re as follo 	sults of these	computations a	are summarized	l				
		Random Variable	Distribution Type	First Parameter (μ_{γ})	Second Parameter (σ_{γ})					
		X ₁	Lognormal	-0.03031231	0.24622068					
	X2		Lognormal	1.608189472	0.04996879					
	X ₃ Lognormal 1.366684005 0.20									

Ban	CHAPTER 4a. RELIABILITY ASSESSMENT Slide No. 42									
- A.	Analytical Performance-Based									
	Reliability Assessment									
	Example 1 (cont'd): Reliability Assessment									
	Us	sing a No	nlinear l	Perform	ance Fu	nction				
1	[Case (b):	Iteration 1						
	Equivalent Normal									
	Random Variable	Failure Point	Standard Deviation	Mean Value	$rac{\partial Z}{\partial X_i}\sigma_{X_i}^N$	Directional Cosines (α)				
	X ₁	1.000E+00	2.462E-01	.462E-01 9.697E-01 1.231E+00		9.681E-01				
	X2	5.000E+00	2.498E-01	4.994E+00	2.498E-01	1.965E-01				
	X ₃	4.000E+00	7.922E-01	3.922E+00	-1.980E-01	-1.557E-01				
•										

P.S.	CHAPTER 4a. RELIABILITY ASSESSMENT Slide No. 44										
-AL	Analytical Performance-Based										
	Reliability Assessment										
	Example 1 (cont'd): Reliability Assessment										
	Usi	ing a No	nlinear F	Performa	ance Fu	nction					
	• Therefore, $\beta = 2.30530$ for this iteration.										
	[Case (b):	Iteration 2							
			Equival	ent Normal							
	Random	Failure	Standard	Mean	$\frac{\partial Z}{\partial T}$	Directional					
	Variable	Point	Deviation	Value	$\partial X_i = \sum_{i=1}^{N} \sum_{i=1}^$	Cosines (a)					
	X_{l}	4.202E-01	1.035E-01	7.718E-01	5.050E-01	9.118E-01					
	X2	4.881E+00	2.439E-01	4.992E+00	1.025E-01	1.850E-01					
	X3	4.206E+00	8.330E-01	3.912E+00	-2.031E-01	-3.667E-01					
C											

Part and	CHAPTER 4a. RELIABILITY ASSESSMENT Sliv									
-AL	Analytical Performance-Based									
	Reliability Assessment									
	Example 1 (cont'd): Reliability Assessment									
	Usir	ng a Non	linear P	Performa	ance Fui	nction				
	•	Therefore,	$\beta = 3.312$	6 for this i	teration.					
			Case (b):]	Iteration 4						
			Equivale	ent Normal						
	Random Variable	Failure Point	re Point Standard Mean Deviation Value		$rac{\partial Z}{\partial X_i}\sigma^N_{X_i}$	Directional Cosines (α)				
	X ₁	Deviation Value ∂X_i 4.612E-01 1.136E-01 8.041E-01 5.49		5.499E-01	9.118E-01					
	X2	4.843E+00	2.420E-01	4.991E+00	1.116E-01	1.850E-01				
	X3	4.989E+00	3.789E+00	-2.212E-01	-3.667E-01					

El an	IL STATE	CHAPTER 4a.	RELI/	ABILIT	Y ASSE	SSME	IT						Slie	de No. 85
- A.	Empirical Reliability Analysis													
Using Life Data														
	Example 3 (cont'd): Right Censored Data									<u>a</u>				
									nont					
		Time Order	zxam		Type		gm C	ensor		ia (m	rears) 101 1	quipi	nent
		Number	1	2	3	4	5	6	7	8	9	10	11	12
		Time (Years)	7	14	15	18	31	37	40	46	46	46	46	46
		TTF or TTC	TTF	TTF	TTF	TTF	TTF	TTF	TTF	TTF	TTC	TTC	TTC	TTC
	TTF = time to failure, and TTC = time to censoring													

and and	CHAPTER 4a. RELIABILITY ASSESSMENT Slide No. 87											
- A	Empirical Reliability Analysis											
	Using Life Data											
	Example 4 (cont'd): Random Censoring											
		Year	TTF (Years)	Number of Occur Failure	rrences of a Given e Mode							
	•	1984	1	0	0	Table 3						
翻		1985	2	7	0	Partial Data Set From 20 000Simulation						
3		1986	3	6	0	Cycles for the Two Failure Modes of						
		1987	4	3	0	Strength and Estigue for a Structural						
		1988	5	0	0	Component						
		1989	6	1	7	Component						
		1990	7	1	12							
		1991	8	0	20							
		1992	9	1	36							
		1993	10	1	47							
		1994	11	5	61							
	.	1995	12	3	33							
	.	1996	13	2	65							
		1998	14	2	58							
	.	1999	16	2	44							
C				. –		l						