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System Definition Models

Bayesian Networks (cont’d)
– Network Creation

• Steps needed to create a Bayesian network:
1. Create a set of variables representing the distinct key 

elements of the situation being modeled.  Every variable 
in the real world situation is represented by a Bayesian 
variable.  Each such variable describes a set of states 
that represent all possible distinct situations for the 
variable.

2. For each such variable, define the set of outcomes or 
states that each can have.  This set is referred to as 
mutually exclusive and collectively exhaustive 
outcomes.  The set of outcomes must cover all 
possibilities for the variable, and that no important 
distinctions are shared between states.  The causal
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relationships among the variables can be constructed by 
answering questions such as: (1) what other variables (if 
any) directly influence this variable; and (2) what other 
variables (if any) are directly influenced by this variable?  
In a standard Bayesian network, each variable is 
represented by an ellipse or squares or any other shape, 
called a node.  A node is, therefore, a Bayesian variable.

3. Establish the causal dependency relationships among 
the variables.  This step involves creating arcs leading 
from the parent variable to the child variable.  Each 
causal influence relationship is described by an arc 
connecting the influencing variable to the influenced 
variable.  The influence arc has a terminating arrowhead 
pointing to the influenced variable.  An arc connects a 
parent (influencing) node to a child (influenced) node
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A directed acyclic graph (DAG) is desirable, in which only 
one semipath, i.e., sequence of connected nodes ignoring 
direction of the arcs, exists between any two nodes.

4. Assess the prior probabilities by supplying the model with 
numeric probabilities for each variable in light of the 
number of parents the variable was given in Step 3.  Use 
conditional probabilities to represent dependencies as 
provided in Figure 12 for demonstration purposes.  The 
figures also show the effect of arc reversal on the 
conditional probability representation.  The first case show 
that X2 and X3 depend on X1.  The joint probability of the 
variables X2, X3, and X1 can be computed using 
conditional probabilities based on these dependency as 
follows:

)()|()|(),,( 11213321 XPXXPXXPXXXP = (1)
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X1 X2

X3

P(X1,X2,X3) = P(X3|X1)P(X2|X1)P(X1)

X1 X2

X3

P(X1,X2,X3) = P(X3|X1)P(X1,X2)
or

P(X1,X2,X3) = P(X3|X1)P(X1|X2)P(X2)

Case 1

X1 X2

X3

P(X1,X2,X3) = P(X3|X1,X2)P(X2)P(X1)

X1 X2

X3

P(X1,X2,X3) = P(X3,X2|X1)P(X1)
or

P(X1,X2,X3) = P(X2|X3,X1)P(X3|X1)P(X1)
Case 2

Case 3

Case 4

Figure 12. Conditional Probabilities for Representing Directed Arcs
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The result for Case 1 is shown in Figure 12.  Case two 
displays different dependencies of X3 on X1 and X2 leading 
to the following expression for the joint probabilities as 
shown in Figure 12:

The models for Cases 3 and 4 are shown in Figure 12 and 
were constructed using the same approach.  The reversal 
of arc changes the dependencies and conditional probability 
structure as illustrated in Figure 13. Bayesian tables and 
probability trees can be used to represent the dependencies 
among the variables.  A Bayesian table is a tabulated 
representation of the dependencies, whereas a probability 
tree is a graphical representation of multi-level 
dependencies using directed arrows similar to Figure 12.  
The examples of the end of this section illustrate the use of 
Bayesian tables and probability trees for this purpose. 

)()(),|(),,( 12213321 XPXPXXXPXXXP = (2)
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X1 X2

X3

P(X1,X2,X3) = P(X3|X1)P(X2|X1)P(X1)

X1 X2

X3

P(X1,X2,X3) = P(X3|X1)P(X1,X2)
or

P(X1,X2,X3) = P(X3|X1)P(X1|X2)P(X2)

Arc reversal leads to an equivalent
representation as follows:

Figure 13. Arc Reversal and Effects on Conditional Probabilities
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5. Bayesian methods can be used to update the 

probabilities based on information gained as 
demonstrated in subsequent examples. By fusing and 
propagating values of new evidence and beliefs through 
Bayesian networks, each proposition eventually is 
assigned a certainty measure consistent with the axioms 
of probability theory.  The impact of each new piece of 
evidence is viewed as a perturbation that propagates 
through the network via message-passing between 
neighboring variables.
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Example 5: Bayesian Tables for Two 
Dependent Variables A and B
– In this example, variable B affects A.  The 

computations of the probability of B for two 
cases of given A occurrence, and given    
occurrence can be represented using a 
Bayesian table, respectively as follows:

AA

Variable A  Probability of 
A P(A|B) = 0.95 P(A| B ) = 0.01 
A  P( A |B) = 0.05 P( A | B ) = 0.99 

 

A
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Example 5 (cont’d): Bayesian Tables for 
Two Dependent Variables A and B
– For the case of given the occurrence of A,

Prior 
probability of 
Variable B 

Conditional 
probabilities of 
variables A & B 

Joint Probabilities of 
variables A & B 

Posterior Probability of variable B after 
variable A has occurred 

P(B) = 0.0001 P(A|B) = 0.95 P(B) P(A|B) 0.000095 P(B|A) = P(B) P(A|B)/P(A) = 0.009412 

P( B ) = 0.9999 P(A| B ) = 0.01 P( B ) P(A| B ) 0.009999 P( B |A) = P( B ) P(A| B )/P(A) = 0.990588 

Total 1.0000   P(A) = 0.010094 P(B|A)+P( B |A) = 1.000000 
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Example 5 (cont’d): Bayesian Tables for 
Two Dependent Variables A and B
– For the case of given the occurrence of ,A

Prior 
probability of 
Variable B 

Conditional 
probabilities of 
variables A & B 

Joint Probabilities of 
variables A & B 

Posterior Probability of variable B after 
variable A has occurred 

P(B) = 0.0001 P( A |B) = 0.05 P(B) P( A |B) 0.000005 P(B| A ) = P(B) x P( A |B)/P( A ) 0.000005 

P( B ) = 0.9999 P( A | B ) = 0.99 P( B ) P( A | B ) 0.989901 P( B | A ) = P( B ) P( A | B )/P( A ) 0.999995 

Total 1.0000   P( A ) = 0.989906 Total P(B| A )+P( B | A ) = 1.000000 
 It can be noted that Total P(A)+P(  ) = 1A
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Example 6: Probability Trees for Two 
Dependent Variables A and B
– Probability trees can be used to express the 

relationships of dependency among random 
variables.

– The Bayesian problem of Example 5 can be 
used to illustrate the use of probability trees.

– The probability tree for the two cases of 
Example 5 is shown in Figure 14. 
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Events

Prior
probabilities

New information

Conditional
probabilities

Joint
probabilities

0.000095

0.000005

0.009999

0.989901

Total Probability = 1.0

Posterior probabilities

A

0.95
B

0.0001

0.05
A

0.9999
B

A

0.01

0.99
A

989906.0)( =AP

010094.0)( =AP

009412.0
010094.0
000095.0

=

000005.0
989906.0
000005.0

=

990588.0
010094.0
009999.0

=

999995.0
989906.0
989901.0

=

Figure 14. Probability-Tree Representation of a Bayesian Model
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Example 7: Bayesian Network for 
Diagnostic Analysis
– A Bayesian network can be used to represent 

a knowledge structure that models the 
relationships among possible medical 
difficulties, their causes and effects, patient 
information, and diagnostic tests results.

– Figure 15 provides simplified schematics of 
these dependencies.
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Visit to
Asia

Patient Information

Smoking

X-Ray Result
Diagnostic Tests

Dyspnea

Tuberculosis
Medical Difficulties

BronchitisLung Cancer

Tuberculosis
Vaccination

Tuberculosis
Exposure

Tuberculosis
Skin Test

Figure 15. A Bayesian Network For Diagnostic Analysis of Medical Tests

CHAPTER 3b.  SYSTEM DEFINITION AND STRUCTURE Slide No. 15

System Definition Models
Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis

• The problem can be simplified by eliminating the 
tuberculosis vaccination and exposure boxes, and 
tuberculosis skin test box. 

• The probabilities of having dyspnea are given by 
the following values: 

  Probability of 
Dyspnea 

Tuberculosis or 
Cancer  

Bronchitis Present Absent 

True Present 0.9 0.1 
True Absent 0.7 0.3 
False Present 0.8 0.2 
False Absent 0.1 0.9 
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis

• The true and false states in the first column are 
constructed from the following logic table:

• The unconditional or marginal probability 
distribution functions are frequently called the belief 
function of the nodes as shown in Figure 16a

Tuberculosis Lung Cancer Tuberculosis or 
Cancer  

Present Present True 
Present Absent True 
Absent Present True 
Absent Absent False 
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Visit 0.01 Smoker 0.50
No Visit 0.99 Non Smoker 0.50

No Visit 0.99 Non Smo0.50
Visit 0.01 Smoker 0.50

Present 0.0104 Present 0.055 Present 0.45
Absent 0.9896 Absent 0.945 Absent 0.55

Absent 0.9896 Absent 0.945 Absent 0.55
Present 0.0104 Present 0.055 Present 0.45

True 0.0648
False 0.9352

False 0.9352
True 0.0648

Abnormal 0.11 Present 0.436
Normal 0.89 Absent 0.564

Visit To Asia Smoking

Tuberculosis Lung Cancer Bronchitis

Tuberculosis or Cancer

Xray Result Dyspnea

Figure 16a. Propagation of Probabilities in Percentages in a Bayesian Network
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Example 7 (cont’d):
Bayesian Network for 
Diagnostic Analysis
– A simple computational 

example is used herein to 
illustrate the use of 
Bayesian methods to 
update probabilities for a 
case of two variables A and 
B with a directed arrow 
from B to A. indicating that 
B affect A. A priori 
probability of B is 0.0001. 
The conditional probability 
of A given B, denoted as 
P(A|B) is given by the 
adjacent table based on 
previous experiences.

B

A 0.990.05

0.010.95A

BVariable A

Conditional Probability of Events Related to 
the Variable A Given the Following:
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis
– The P(B|A) is of interest and can be computed 

as 

– The term P(A) in Eq. 3 can be computed 
based on the complement of B as follows:

)(
)()|()|(

AP
BPBAPABP = (3)

)()|()()|(
)()|()|(

BPBAPBPBAP
BPBAPABP

+
= (4)
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis

• Substituting the probabilities from the table above, 
the following conditional probability can be 
computed:

• A propagation algorithm can be used to update the 
beliefs attached to each relevant node in the 
network.

• Interviewing a patient produces the information for 
the box of visiting Asia to certainty (100%) as 
shown in Figure 16b.

0.009411
)0001.01)(01.0()0001.0)(95.0(

)0001.0)(95.0()|( =
−+

=ABP (5)
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Visit 1.00 Smoker 0.50
No Visit 0.00 Non Smoker 0.50

No Visit 0.00 Non Smo0.50
Visit 1.00 Smoker 0.50

Present 0.05 Present 0.055 Present 0.45
Absent 0.95 Absent 0.945 Absent 0.55

Absent 0.95 Absent 0.945 Absent 0.55
Present 0.05 Present 0.055 Present 0.45

True 0.102
False 0.898

False 0.898
True 0.102

Abnormal 0.145 Present 0.45
Normal 0.855 Absent 0.55

Visit To Asia Smoking

Tuberculosis Lung Cancer Bronchitis

Tuberculosis or Cancer

Xray Result Dyspnea

Figure 16b. Updating Probabilities Based on Visit to Asia 
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis
– Such a finding propagates through the 

network, and the belief functions of several 
nodes are updated.

– Further updates can be made based on 
knowing the patients to be a smoker, and 
based on test results of X-ray and dyspnea as 
shown in Figures 16c, 16d, and 16e, 
respectively.
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Visit 1.00 Smoker 1.00
No Visit 0.00 Non Smoker 0.00

No Visit 0.00 Non Smo0.00
Visit 1.00 Smoker 1.00

Present 0.05 Present 0.1 Present 0.6
Absent 0.95 Absent 0.9 Absent 0.4

Absent 0.95 Absent 0.9 Absent 0.4
Present 0.05 Present 0.1 Present 0.6

True 0.145
False 0.855

False 0.855
True 0.145

Abnormal 0.185 Present 0.564
Normal 0.815 Absent 0.436

Visit To Asia Smoking

Tuberculosis Lung Cancer Bronchitis

Tuberculosis or Cancer

Xray Result Dyspnea

Figure 16c. Updating Probabilities Based on Visit to Asia and Smoking 
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Figure 16d. Updating Probabilities Based on Visit to Asia, Smoking, and X-Ray Results 

Visit 1.00 Smoker 1.00
No Visit 0.00 Non Smoker 0.00

No Visit 0.00 Non Smo0.00
Visit 1.00 Smoker 1.00

Present 0.0012 Present 0.0025 Present 0.6
Absent 0.9988 Absent 0.9975 Absent 0.4

Absent 0.9988 Absent 0.9975 Absent 0.4
Present 0.0012 Present 0.0025 Present 0.6

True 0.0036
False 0.9964

False 0.9964
True 0.0036

Abnormal 0.00 Present 0.521
Normal 1.00 Absent 0.479

Visit To Asia Smoking

Tuberculosis Lung Cancer Bronchitis

Tuberculosis or Cancer

Xray Result Dyspnea
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Figure 16e. Updating Probabilities Based on Visit to Asia, Smoking, X-Ray Results,
and Dyspnea Results 

Visit 1.00 Smoker 1.00
No Visit 0.00 Non Smoker 0.00

No Visit 0.00 Non Smo0.00
Visit 1.00 Smoker 1.00

Present 0.0019 Present 0.0039 Present 0.922
Absent 0.9981 Absent 0.9961 Absent 0.078

Absent 0.9981 Absent 0.9961 Absent 0.078
Present 0.0019 Present 0.0039 Present 0.922

True 0.0056
False 0.9944

False 0.9944
True 0.0056

Abnormal 0.00 Present 1.00
Normal 1.00 Absent 0.00

Bronchitis

Tuberculosis or Cancer

Visit To Asia Smoking

Xray Result Dyspnea

Tuberculosis Lung Cancer
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis
– The Bayesian table can be used to model a 

portion of the Bayesian network of this 
example.

– The visit to Asia block can be denoted as 
variable V and that the tuberculosis block as 
variable T.

– Using the conditional probabilities P(T|V) = 
0.05 and P(T|  ) = 0.01, the Bayesian table can 
then be constructed for the first directed arrow 
of Figure 16a from V to T as follows:

V
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis
– For the case of given the occurrence of V, i.e., 

occurrence of a visit,

– The probability tree for these two cases is 
shown in Figure 17.

Prior 
probability of 
Variable V 

Conditional 
probabilities of 
variables T & V 

Joint Probabilities of 
variables T & V 

Posterior Probability of variable V after 
variable T has occurred 

P(V) = 0.0100 P(T|V) = 0.05 P(V) P(T|V) 0.0005 P(V|T) = P(V) P(T|V)/P(T) = 0.04808 

P(V ) = 0.9900 P(T|V ) = 0.01 P(V ) P(T|V ) 0.0099 P(V |T) = P(V ) P(T|V )/P(T) = 0.95192 

Total 1.0000   P(T) = 0.0104 P(V|T)+P(V |T) = 1.00000 
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Events

Prior
probabilities

New information

Conditional
probabilities

Joint
probabilities

0.0005

0.0095

0.0099

0.9801

Total Probability = 1.0

Posterior probabilities

T

0.05
V

0.01

0.95
T

0.99
V

T

0.01

0.99

9896.0)( =TP
0104.0)( =TP

048077.0
0104.0
0005.0

=

009600.0
9896.0
0095.0

=

951923.0
0104.0
0099.0

=

990400.0
9896.0
9801.0

=T

Figure 17. Probability-Tree Representation of a Diagnostic Analysis Problem 
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis
– Similar treatments can be developed for all the 

relationships, i.e., directed arrows, of Figure 
16a using the following summary of 
conditional probabilities based on these 
arrows:

Note: These conditional probabilities can be used to construct the rest of Figure 16a.
Figures 16b to 16e can be constructed using similar process involving trial and error to 
obtain set consequent results in some cases
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Example 7 (cont’d): Bayesian Network for 
Diagnostic Analysis
Event Affected Causal event(s) or condition(s) Conditional 

Probability 
Tuberculosis (T) Visit to Asia (V) 0.05 
Tuberculosis (T) Did not Visit to Asia (V ) 0.01 
Lung cancer (L) Smoker (S) 0.10 
Lung cancer (L) Nonsmoker ( S ) 0.01 
Bronchitis (B) Smoker (S) 0.60 
Bronchitis (B) Nonsmoker ( S ) 0.30 
Positive X-ray (X) Tuberculosis or Cancer (TC) 0.04906 
Positive X-ray (X) No Tuberculosis Nor Cancer (TC ) 0.98911 
Dyspnea (D) B and TC 0.90 
Dyspnea (D) B and TC  0.70 
Dyspnea (D) B  and TC 0.80 
Dyspnea (D) B  and TC  0.10 
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Example 8: Bayesian Tables for Identifying 
Defective Electric Components
– A batch of 1000 electric components were 

produced in a week at a factory, and was 
found after excessive and time-consuming 
tests, that 30% of them are defective and 70% 
are non-defective.  Unfortunately, all 
components are mixed together in a large 
container.

– Selecting at random a component from the 
container has a non-defective prior probability 
of 0.7. 
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Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components
– The objective of the company herein is to 

screen all the components to identify the 
defective components.

– A quick test on each component can be used 
for this screening.

– This test has a detection probability of a non-
defective component of 0.8, and a detection 
probability of a defective component of 0.9. 
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Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components
– The prior probabilities need to be updated 

using the probabilities associated with this 
quick test.

– The Bayesian tables can be constructed 
based on the following definition of variables:

Component is non-defective = B 

Component is defective = B  

Component passing the quick test = A 

Component not passing the quick test = A  
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Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components
– The Bayesian tables can then be constructed 

for two cases as follows:
• For the case of given the occurrence of A,

Prior 
probability of 
Variable B 

Conditional 
probabilities of 
variables A & B 

Joint Probabilities of 
variables A & B 

Posterior Probability of variable B after 
variable A has occurred 

P(B) = 0.0700 P(A|B) = 0.80 P(B) P(A|B) 0.560000 P(B|A) = P(B) P(A|B)/P(A) = 0.949153 

P(B) = 0.3000 P(A|B) = 0.10 P(B) P(A|B) 0.030000 P(B |A) = P(B) P(A|B)/P(A) = 0.050847 

Total 1.0000   P(A) = 0.590000 P(B|A)+P(B |A) = 1.000000 
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Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components

• For the case of given the occurrence of    ,A

Prior 
probability of 
Variable B 

Conditional 
probabilities of 
variables A & B 

Joint Probabilities of 
variables A & B 

Posterior Probability of variable B after 
variable A has occurred 

P(B) = 0.7000 P( A |B) = 0.200 P(B) P( A |B) 0.140000 P(B| A ) = P(B) x P( A |B)/P( A ) 0.341463 

P( B ) = 0.3000 P( A | B ) = 1.900 P( B ) P( A | B ) 0.270000 P( B | A ) = P( B ) P( A | B )/P( A ) 0.658537 

Total 1.0000   P( A ) = 0.410000 Total P(B| A )+P( B | A ) = 1.000000 
 

It can be noted that Total P(A)+P(  ) = 1A
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Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components
– Figure 18 shows the probability tree for this 

decision situation.
– It also shows the conditional probabilities 

obtained from the information of the test.
– The probability that a component is non-

defective and fails the test can be computed 
as the joint probability by applying the 
multiplication rule as follows:
P (non-defective and failing the test) = 0.7 (0.2) = 0.14
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Events

Prior
probabilities

New information

Conditional
probabilities

Joint
probabilities

0.7(0.8) = 0.56

0.7(0.2) = 0.14

0.3(0.1) = 0.03

0.3(0.9) = 0.27

Total Probability = 1.0

Posterior probabilities

Passing test A

0.80
Non-defective B

0.70

0.20
A

0.30
B

0.10

0.90

41.0)( =AP

59.0)( =AP

949.0
59.0
56.0

=

341.0
41.0
14.0

=

051.0
59.0
03.0

=

659.0
41.0
27.0

=

Defective

Not passing test

ANot passing test

Passing test A

Figure 18. Probability-Tree Representation of a Defective Electric Components Problem
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Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components
– The probability that a component is defective 

and fails the test is

– Therefore, a component can fail the test in two 
cases of being non-defective and being 
defective.  The probability of failing the test 
can then be computed by adding the two joint 
probabilities as follows

P (defective and failing the test) = 0.3 (0.9) = 0.27

P (failing the test) = 0.14 + 0.37 = 0.41

CHAPTER 3b.  SYSTEM DEFINITION AND STRUCTURE Slide No. 39

System Definition Models

Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components
– Hence, the probability of the component 

passing the test can be computed as the 
probability of the complementary event as 
follows:

– The posterior probability can be determined by 
dividing the appropriate joint probability by 
respective probability values.

P (passing the test) = 0.56 + 0.03 = 0.59 
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Example 8 (cont’d): Bayesian Tables for 
Identifying Defective Electric Components

• For example to determine the posterior probability 
that the component is non-defective, the joint 
probability that comes from the tree branch of a 
non-defective component of 0.14 can be used as 
follows:

• All other posterior probabilities on the tree are 
calculated similarly.  The posterior probabilities of 
non-defective component defective component 
must add up to one, i.e., 0.341+0.659=1

Posterior P (component non-defective) = 0.14/0.41 = 0.341

CHAPTER 3b.  SYSTEM DEFINITION AND STRUCTURE Slide No. 41

System Definition Models

Process Modeling Methods
– The definition of a system can be viewed as a 

process that emphasizes an attribute of the 
system.

– Example Processes:
• Engineering systems as products to meet user 

demand.
• Engineering systems with lifecycles.
• Engineering systems defined by a technical 

maturity process.
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System Definition Models

Process Modeling Methods (cont’d)
– System Engineering Process

• The system engineering process focuses on the 
interaction between human and the environment.

• The steps involved in a system engineering 
process can be viewed to constitute a spiral 
hierarchy.

• A system engineering process has the following 
steps as shown in Figure 19:
1. Recognition of need or opportunity.
2. Identification and qualification of the goal, objectives, 

and performance and functional requirements.
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Process input:
Identified need

Define goal and
objectives

Define system
requirements

Allocate
functions

Define alternate
configurations or

concepts

Feedback based on
comparisons

Choose best
concept

Design the system
components

Test and
validate

Improve
designs

Design
loop

Requirements
loop

Test and
validate

Improve system
design

Assess
interfaces

Integrate components
into system

Synthesis
loop

Assess actual
characteristics

Compare to goal and
objectives

Process output:
Physical system

Feedback based on
tests

Figure 19. System Engineering Process
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Process Modeling Methods  (cont’d)
– System Engineering Process

3. Creation of alternative design concepts.  
4. Testing and validation.  
5. Performance of tradeoff studies and selection of a 

design.  
6. Development of a detailed design.  
7. Implementing the selected design decisions.  
8. Performance of missions.  
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Process Modeling Methods  (cont’d)
– Lifecycle of Engineering Systems

• Engineering products can be treated as systems 
that have a lifecycles.

• A generic lifecycle of a system begins with initial 
identification of a need and extends through

– Planning
– Research
– Design
– Production or Construction
– Evaluation
– Consumer use
– Field support
– Product phase (out or disposal)
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Process Modeling Methods  (cont’d)
– Lifecycle of Engineering Systems

Identification of a
Need

Planning and
Research

Evaluation

Detailed Design

Production or
Construction

Product Phase out or
Disposal

Consumer Use
and Field
Support

Figure 20. Lifecycle of Engineering Systems
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System Lifecycles Phases 

Consumer-to-
Consumer Cycle 

Phases 
Activities 

Identification of Need Consumer “Wants or desires” for systems because of obvious 
deficiencies/problems or made evident through basic 
research results. 

System Planning Function Marketing analysis; feasibility study; advanced system 
planning through system selection, specifications and plans, 
acquisition plan research/design/ production, evaluation 
plan, system use and logistic support plan; planning review; 
proposal. 

System Research Function Basic research; applied research based on needs; research 
methods; results of research; evolution from basic research 
to system design and development. 

 
System Design Function 

Design requirements; conceptual design; preliminary system 
design; detailed design; design support; engineering 
model/prototype development; transition from design to 
production. 

Production and/or 
Construction Function 

Producer 

Production and/or construction requirements; industrial 
engineering and operations analysis such as plant 
engineering, manufacturing engineering, methods 
engineering, and production control; quality control; 
production operations. 

System Evaluation Function Evaluation requirements; categories of test and evaluation; 
test preparation phase including planning and resource 
requirements; formal test and evaluation; data collection, 
analysis, reporting, and corrective action; re-testing. 

System Use and Logistic 
Support Function 

Consumer 

System distribution and operational use; elements of 
logistics and lifecycle maintenance support; system 
evaluation. Modifications, product phase-out; material 
disposal, reclamation, and recycling. 

Table 1
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Example 9: Lifecycle of NASA Engineering 
Systems
– The NASA model can generally be defined to 

include the following phases:
• Pre-phase A. Advanced Studies
• Phase A. Conceptual Design Studies
• Phase B. Concept Definition
• Phase C. Design and Development
• Phase D. Fabrication, Integration, Test and 

Certification
• Phase E. Pre-Operations
• Phase F. Operations and Disposal
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Process Modeling Methods  (cont’d)
– Technical Maturity Model

• The technical maturity model is another view of the 
lifecycle of a project.

• According to this model, the lifecycle considers a 
program as an interaction between society and 
engineering.

• The model concentrates on the engineering 
aspects of the program and not on the technology 
development through research.

• The program must come to fruition by meeting both 
the needs of the customer and also meeting the 
technical requirements.
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Process Modeling Methods  (cont’d)
– Spiral Development Process

• A product or a system can be developed using a 
spiral process as shown in Figure 21.

• Spiral development is used for designing marine, 
aerospace, and other advanced systems.

• Figure 21 shows similar phases to what was 
included in previously presented process modeling 
methods in this chapter with an added spiral 
organization and risk review and analysis at various 
levels of development. 
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Spiral Development Model
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Black-Box Method
– Historically, engineers have built analytical 

models to represent natural and human-made 
systems using empirical tools of observing 
system attributes of interest (called system 
output variables) and trying to relate them to 
some other controllable or uncontrollable input 
variables.

– For example, a structural engineer might 
observe the deflection of a bridge as an output 
of an input such as a load at middle of its 
span.
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System Definition Models
Black-Box Method (cont’d)
– By varying the intensity of the load, the 

deflection changes.
– Empirical test methods would vary the load 

incrementally and the corresponding 
deflections are measured, thereby producing a 
relationship such as

( )xfy = (6)

x = input variable
y = output variable
f = a function that relates input to output
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Black-Box Method (cont’d)
– In general, a system might have several input 

variables that can be represented as a vector 
X, and several output variables that can be 
represented by a vector Y.

System fInput x Output y

Figure 22. Black-Box System Model
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Black-Box Method (cont’d)

• Knowledge of the physics of the system helps.
• The analyst needs to decide on the nature of the 

time relation between input and output by 
addressing questions such as

– Is the output instantaneous as a result of the input?
– If the output lags behind the input, what is the lag time?  

Are the lag times for the input and output related, e.g., 
exhibiting nonlinear behavior?

– Does the function f depend on time, number of input 
applications, or magnitude of input?

– Does the input produce an output, and linger within the 
system affecting future outputs?
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Example 10: Probable Maximum Flood
– Dams classified according to their

• Size
• Hazard

– Dam Sizes
• Small dams: 25 to 40 ft high
• Intermediate dams: 40 to 100 ft high
• Large dams are over 100 ft high

– Low hazard dams are those for which failure 
of the dam would result in no loss of life and 
minimal economic loss.
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Example 10 (cont’d): Probable Maximum 
Flood
– A significant hazard is one that would cause a 

few losses of life and appreciable economic 
loss.

System:
River Catchment

Basin
Input x Output y

Meteorological and
Hydrological
Conditions

Flood Runoff

Figure 22. Lifecycle of Engineering Systems
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Example 10 (cont’d): Probable Maximum 
Flood
– A high hazard would result in the loss of more 

than a few lives and excessive economic loss.
– Three methods used by USACE for 

determining extreme floods:
• Frequency Analyses (small dams with significant 

hazard)
• Standard Project Flood, SPF (some risk can be 

tolerated)
• Probable Maximum Flood, PMF (high hazard and 

substantial reduction in risk) 
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System Definition Models
State-based Method
– A convenient modeling method of systems can 

be based on identifying state variables that 
would be monitored either continuously or at 
discrete times.

– The values of these state variables over time 
provide a description of the needed model of a 
system.

– The state variables should be selected such 
that each one provides unique information.

– Redundant state variables are not desirable.
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State-based Method (cont’d)
– The challenge faced by system engineers is to 

identify the minimum number of state variables 
that would accurately represent the behavior 
of the system over time.

– Components of the a system can have two 
possible states: a functional state or failed 
state.

– In general, component models can have more 
than two states.

– Such models provide the tools necessary to 
model repairable systems. 
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State-based Method (cont’d)
– Example:

• A method used to develop reliability models is the 
state-space method for system reliability 
evaluation.

– According to this method, a system is 
described by its state and by the possible 
transitions between these states.

– The system states and the possible transitions 
are illustrated by a state-space diagram
(Markov diagram). See Figure 24
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System Definition Models

Component 1

Component 2

1

3

2

4

Figure 24a.
A Two-Component in Parallel System

Figure 24b.
State Space Diagram for the
Parallel System
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System Definition Models
State-based Method (cont’d)
– The various states of the system can be 

defined as the combination of all possible 
states as summarized in the table
System State 
According to 
Figure 3-24b 

State of 
Component 1 of 
Figure 3-24a 

State of 
Component 2 
of Figure 3-24a

Description of the State of the 
System 

1 Functioning Functioning System survival based on both 
components functioning. 

2 Failed Functioning System survival based on one 
component functioning and one 
component failed. 

3 Functioning Failed System survival based on one 
component functioning and one 
component failed. 

4 Failed Failed System failure based on both 
components failed. 
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System Definition Models

Example 11: Markov Modeling of 
Repairable Systems
– Repairable systems can be assumed for the 

purpose of demonstration to exit in either a 
normal, i.e., operating, state, or failed state as 
shown in Figure 25.

– A system in a normal state makes transitions 
to either normal states that are governed by its 
reliability level, i.e., it continues to be normal; 
or to the failed states through failure.

CHAPTER 3b.  SYSTEM DEFINITION AND STRUCTURE Slide No. 65

System Definition Models
Example 11 (cont’d): Markov Modeling of 
Repairable Systems

Normal
State

Failed
State

Failure

Repair

Continues
normal

Continues
failed

Figure 25. A Markov Transition Diagram for Repairable Systems
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System Definition Models
Example 11 (cont’d): Markov Modeling of 
Repairable Systems

• Once it is in a failed state, the system makes 
transitions to either failed states that are governed 
by its repairable-ease level, i.e., it continues to be 
failed; or to the normal states through repair.

• Four transition probabilities are needed for the 
following cases:

– Normal-to-normal state transition
– Normal-to-failed state transition
– Failed-to-failed state transition
– Failed-to-normal state transition
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System Definition Models
Example 11 (cont’d): Markov Modeling of 
Repairable Systems

• The transition probabilities in this case can be 
constructed using reliability analysis as provided in 
Table 3 for illustration purposes.

From State To State Probability Comments 
Normal State Failed State 0.10 The probabilities originating from 

one node must add up to one, i.e., 
Normal State Normal State 0.90 0.10 + 0.90 = 1.0 
Failed State Normal State 0.50 The probabilities originating from 

one node must add up to one, i.e., 
Failed State Failed State 0.50 0.10 + 0.90 = 1.0 

 

Table 3. Daily Transition Probabilities
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System Definition Models

Component Integration Method
– In structural engineering, a roof truss can 

viewed as a multiple-component system.
– The truss in Figure 26 has 13 members.
– Member forces can be determined using 

statics.
– Other system attributes such as member 

deflection and stresses can be computed 
based on in the internal forces and material 
properties.
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Component Integration Method (cont’d)

1

2

3

4

5

6

7

8 9

10

11
12

13

Figure 26. A Truss Structural System
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System Definition Models

Component Integration Method (cont’d)
– The physical connectivity of the real 

components can be defined as the 
connectivity of the components in the 
structural analysis model.

– However, if one is interested in the reliability 
and/or redundancy of the truss, a more 
appropriate model would be as shown in 
Figure 27, called a reliability block diagram.
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Component Integration Method (cont’d)
– Figure 27 shows the attributes of reliability or 

redundancy. According to this model, the 
failure of one component would result in the 
failure of the truss.

1 1332 ... 12

13 components

Figure 27. A System in Series for the Truss as a Reliability Block Diagram
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Hierarchical Definitions of Systems

Knowledge and Information Hierarchy
– Source Systems

• At the first level of knowledge, which is usually 
referred to as level (0), the system is known as a 
source system.

• Source systems comprise three different 
components, namely object systems, specific 
image systems and general image systems.

• The object system constitutes a model of the 
original object.

• It is composed of an object, attributes and a 
backdrop.
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Hierarchical Definitions of Systems

Knowledge and Information Hierarchy
– Source Systems (cont’d)

• The object represents the specific problem under 
consideration.

• The attributes are the important and critical 
properties or variables selected for measurement 
or observation as a model of the original object.

• The backdrop is the domain or space within which 
the attributes are observed.
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Hierarchical Definitions of Systems
Knowledge and Information Hierarchy
– Data Systems

• The second level of a hierarchical system 
classification is the data system.

• The data system includes a source system together 
with actual data introduced in the form of states of 
variables for each attribute.

• The actual states of the variables at the different 
support instances yield the overall states of the 
attributes.

• Special functions and techniques are used to infer 
information regarding an attribute, based on the 
states of the variables representing it.
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Hierarchical Definitions of Systems

Knowledge and Information Hierarchy
– Generative Systems

• At the generative knowledge level, support 
independent relations are defined to describe the 
constraints among the variables.

• These relations could be utilized in generating 
states of the basic variables for a prescribed initial 
or boundary condition.

• The set of basic variables includes those defined 
by the source system and possibly some additional 
variables that are defined in terms of the basic 
variables..
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Hierarchical Definitions of Systems

Knowledge and Information Hierarchy
– Generative Systems (cont’d)

• Two main approaches for expressing these 
constraints:
1. The first approach consists of a support independent 

function that describes the behavior of the system. A 
function defined as such is known as a behavior 
function.

2. The second approach consists of relating successive 
states of the different variables. A function defined as 
such is known as a state-transition function.

• An example state-transition function was provided 
in Example 11 using Markov chains. 
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Hierarchical Definitions of Systems

Knowledge and Information Hierarchy
– Structure Systems

• Structure systems are sets of other systems or 
subsystems.

• The subsystems could be source, data or 
generative systems.

• These subsystems may be coupled due to having 
common variables or due to interaction in some 
other form.



40

CHAPTER 3b.  SYSTEM DEFINITION AND STRUCTURE Slide No. 78

Hierarchical Definitions of Systems

Knowledge and Information Hierarchy
– Metasystems

• Metasystems are introduced for the purpose of 
describing changes within a given support set.

• The metasystem consists of a set of systems 
defined at some lower knowledge level and some 
support-independent relation.

• Referred to as a replacement procedure, this 
relation defines the changes in the lower level 
systems.

• All the lower level systems should share the same 
source system.
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Hierarchical Definitions of Systems

Knowledge and Information Hierarchy
– Metasystems (cont’d)

• There are two different approaches whereby a 
metasystem could be viewed in relation to the 
structure system:

– The first approach is introduced by defining the system as 
a structure metasystem.

– The second approach consists of defining a metasystem
of a structure system whose elements are behavior 
systems. 
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Hierarchical Definitions of Systems

Example 12: System Definition of 
Structural
– A structure, such as a building, can be defined 

using a hierarchy of information levels to 
assess the structural adequacy resulting from 
loads applied to the structure.

– The system levels for this case are provided 
for demonstration purposes as follows:

• Goal: The goal is to assess the structural 
adequacy of the building
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Hierarchical Definitions of Systems

Example 12 (cont’d): System Definition of 
Structural

• Source System objects: Columns, beams, slabs, 
footings, dead load, live load, etc.

• Data System: Dimensions, material properties, 
load intensities, etc.

• Generative System: Prediction models of stress, 
such as, stiffness analysis, stress computation, 
ultimate strength assessment of components in 
flexure, shear, and buckling.
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Hierarchical Definitions of Systems

Example 12 (cont’d): System Definition of 
Structural

• Structure System: Performance functions can be 
defined as strength of components minus 
respective load effects.  The reliability of each 
component can be assessed based on these 
performance functions.

• Metasystem: The overall structural adequacy 
assessment of system based on its components 
using system reliability concepts
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System Complexity

Our most troubling long-range problems, 
such as economic forecasting and trade 
balance, defense systems, and genetic 
modeling, center on systems of 
extraordinary complexity.
The systems that host these problems -
computer networks, economics, ecologies, 
and immune systems - appear to be as 
diverse as the problems.
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System Complexity
Understanding and modeling system 
complexity can be viewed as a pretext for 
solving complex scientific and 
technological problems, such as, finding 
cure for the acquired immune deficiency 
syndrome (AIDS) or solving long-term 
environmental issues or using genetic 
engineering safely in agricultural products.
The study of complexity led to, for 
example, chaos and catastrophe theories.
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System Complexity

Even if complexity theories would not 
produce solutions to problems, they can 
still help us to understand complex 
systems and perhaps direct experimental 
studies.
Theory and experiment go hand in glove, 
therefore providing opportunities to make 
major contributions.
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“No  data  processing  systems,   whether  artificial
or  living,  can  process  more  than  2x1047  bits 
per  second  per  gram  of  its  mass,” 

kn < 1093 (7)

Figure 28 shows a plot of this inequality for
values of k = 2 to 10 colors
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Figure 28. The Bremermann’s Limit for Pattern Recognition
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System Complexity

For example using only two colors, a 
transcomputational state is reached at q > 
18 colors.
These computations in pattern recognition 
can be directly related to human vision and 
the complexity associated with processing 
information by the retina of a human eye.

CHAPTER 3b.  SYSTEM DEFINITION AND STRUCTURE Slide No. 89

System Complexity
According to Klir and Folger (1988), if we 
consider a retina of about one million cells 
with each cell having only two states of 
active and inactive in recognizing an 
object, modeling the retina in its entirety 
would require the processing of

bits of information, far beyond the 
Bremermann’s limit.

21,000,000 = 10300 (7)
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Miller (1978) described these relationships 
for living systems using the following 
hypothesis that was analytically modeled 
and experimentally validated:

“As the information input to a single channel of a living system –
measured in bits per second – increases, the information output –
measured similarly – increases almost identically at first but 
gradually falls behind as it approaches a certain output rate, the 
channel capacity, which cannot be exceeded.  The output then
levels off at that rate, and finally, as the information input 
rate continues to go up, the output decreases gradually towards 
zero as breakdown or the confusion state occurs under overload.”
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The above hypothesis was used to 
construct families of curves to represent 
the effects of information input overload as 
shown schematically in Figure 29.
Once the input overload is removed, most 
living systems recover instantly from the 
overload and the process is completely 
reversible; however, if the energy level of 
the input is much larger than the channel 
capacity, a living system might not fully 
recover from this input overload.



47

CHAPTER 3b.  SYSTEM DEFINITION AND STRUCTURE Slide No. 92

System Complexity
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Figure 29. A Schematic Relationship of Input and Output Information
Transmission Rates for Living Systems
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System Complexity

Living systems also adjust the way they 
process information in order to deal with 
an information input overload using one 
or more of the following processes by 
varying degrees depending on the level 
of a living system in terms of complexity:

1. omission by failing to transmit information,
2. error by transmitting information incorrectly,
3. queuing by delaying transmission,
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System Complexity

4. filtering by giving priority in processing,
5. abstracting by processing messages with 

less than complete details,
6. multiple channel processing by 

simultaneously transmitting messages over 
several parallel channels,

7. escape by acting to cut off information input, 
and

8. chuncking by transformation information in 
meaningful chunks.
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Homework Assignment #3

Problems:
3.2
3.5
3.9
3.12
3.13


