

University of Maryland, College Park

ENCE 454 ©Assakka

Course Syllabus

INSTRUCTOR:

Name: Dr. Ibrahim A. Assakkaf

Office Hours: Tu Th 11:00 am - 12:00 noon, and 1:00 pm - 2:00 pm

F 12:00 noon -1:00 pm, and by appointment

Room: 0305, Engineering Classroom Building (EGR)

Center for Technology and Systems Management

(CTSM)

Telephone: (W) 301-405-3279

Email: assakkaf@eng.umd.edu

URL: http://ctsm.umd.edu/assakkaf

INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COMPUTERS

Slide No. 3

ENCE 454 ©Assakkat

Course Syllabus

TEACHING ASSISTANT:

Name: Ms. Kyungha (Kelly) Park

Office Hours: Tu Th 11:00 am – 12:00 noon

Room: 1129, Engineering Laboratory

Building (EGL)

Telephone: (301) 405-8718

Email: pdiva78@hotmail.com

ENCE 454 ©Assakkaf

TEXTBOOKS:

- 1. "Reinforced Concrete- A Fundamental Approach" Edward G. Nawy, 5th Edition, 2003, Prentice Hall.
- 2. "Building Code Requirements for Structural Concrete (318-02) and Commentary (318-02)," American Concrete Institute (ACI).

INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COMPUTERS

Slide No. 5

ENCE 454 ©Assakka

REFERENCES:

Course Syllabus

- 1. "<u>Reinforced Concrete Design</u>," 5th Edition, Spiegel, L. and Limbrunner, G. F., 2003, Prentice Hall.
- 2. "Design of Concrete Structures," 12th Edition, Nilson, A. H., 1997, McGraw Hill.

S. S.	INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COM	MPUTERS	Slide No. 6
94	Course Syllabus		ENCE 454 ©Assakkaf
	<u>GRADING:</u>		
	Homework	20%	
*	Project	20%	
	Midterm Exam	25%	
	Final Exam	35%	
	Quizzes & Attendance (±)		<u> </u>
		100%	
Œ.			

INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COMPUTERS

Slide No. 7

ENCE 454 ©Assakkat

Course Syllabus

PREREQUISITES:

- ENCE 353 and ENCE 355
- Permission of the Department

GENERAL COURSE DESCRIPTION (UM SCHEDULE OF CLASSES, SPRING 2004):

Formerly ENCE 451. Combined bending and compression, development and anchorage of reinforcement, deflections, design of slabs including one-way and two-way, design of footings, retaining walls, introduction to pre-stressed concrete, design of multi-story buildings.

ENCE 454 ©Assakkaf

Course Syllabus

HOMEWORK ASSIGNMENTS:

Professional presentation of homework assignments is required. Professional presentation consists of neat and organized solution of problems on <u>one side of</u>

8.5"x11" papers. Any homework not complying with professional standards will not be graded and will be assigned zero credit. The homework assignments are due one week after they are assigned. Homework will be assigned as the material is covered. Assignments turned in late will be docked 10% for each day it is late past the original due date.

INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COMPUTERS

Slide No. 9

ENCE 454 ©Assakkaf

Course Syllabus

HOMEWORK ASSIGNMENTS (cont'd):

Solutions will be available from the TA and on the class website after the problems are returned. No assignment will be accepted after the answers have been posted. Students are encouraged to discuss and formulate solutions to the problems by working in teams. However, assignments must be completed and submitted individually. Simply copying the answers from another student or from a solutions manual is not acceptable and will not be tolerated.

Course Syllabus

ENCE 454 ©Assakkaf

HOMEWORK ASSIGNMENTS (cont'd):

Guidelines for homework are given below:

- 1. Use good quality paper, such as engineering graph paper or college-ruled paper, any color, with no spiral edges
- 2. Write on only one side of the paper
- 3. Either pen or pencil is acceptable
- 4. Include your name, section, and page number (e.g. 1/3 means 1 of 3) on each sheet
- 5. Staple all pages together in the upper left corner
- 6. Neatly box all answers, and include appropriate units for numerical answers
- 7. Show all work (e.g. no work means no credit will be given)

INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COMPUTERS

Slide No. 11

ENCE 454 ©Assakkaf

Course Syllabus

HOMEWORK ASSIGNMENTS (cont'd):

If the above guidelines are not followed, the TA will either reject the assignment outright, for extreme cases, or deduct points for items that do not conform to the specifications.

ENCE 454 ©Assakkaf

Course Syllabus

EXAMS AND QUIZZES:

All students must take all exams and quizzes including the final exam. Only extenuating circumstances will be accepted as an excuse for missing an exam. The student must notify the instructor of the reason for absence as soon as possible. Health related excuses require **medical reports** and the **signature of a physician** that provided treatment. You are encouraged to go over Chapter 4 of the Undergraduate Catalogue for the University policies, or visit http://www.inform.umd.edu/ugradcat/chapter4/attenda nce.html

INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COMPUTERS

Slide No. 13

ENCE 454 ©Assakkaf

Course Syllabus

COURSE WEBSITE: Students are encourage to access course web site at http://www.ajconline.umd.edu to download course materials such as homework sets and solutions. Timely information will also be posted on the web site. At initial login, use your wam account name as the username, and your SID as the password. You are advised to change your password after your first login. Report any problem with the course web site to the instructor. For technical problems of the web site, contact the Instructional Technologies staffs at 0123 Martin Hall.

Topics to be Covered in This Course

- Concrete and reinforced concrete
- Loads
- Beams
 - Flexure
 - Shear and diagonal tension
 - Serviceability considerations
- Serviceability (deflection) of Beams and one-way slabs

Topics to be Covered in This Course

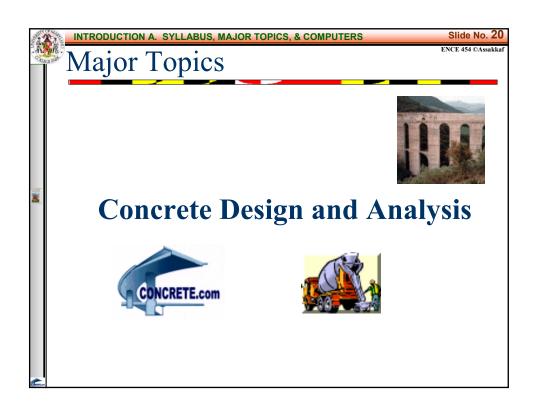
- Columns
 - Axially loaded
 - Combined compression and bending
- Bond development of reinforcing bars
- Design of two-way slabs and plates
- Design of footings and retaining walls
- Introduction to prestressed concrete
- Design of multi-story buildings

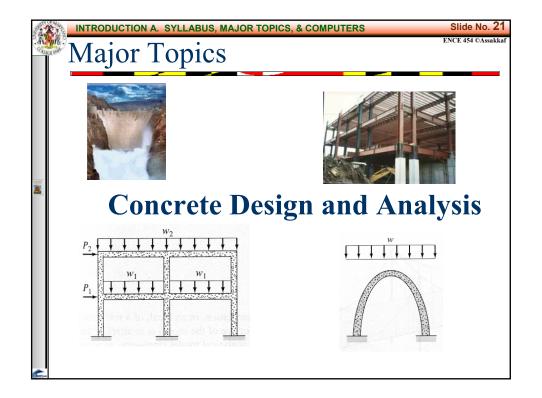
Course Syllabus

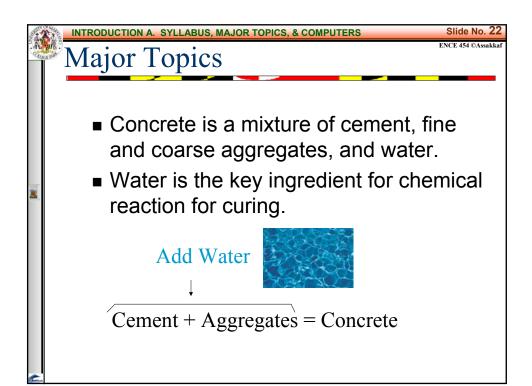
■ Schedule for Lectures

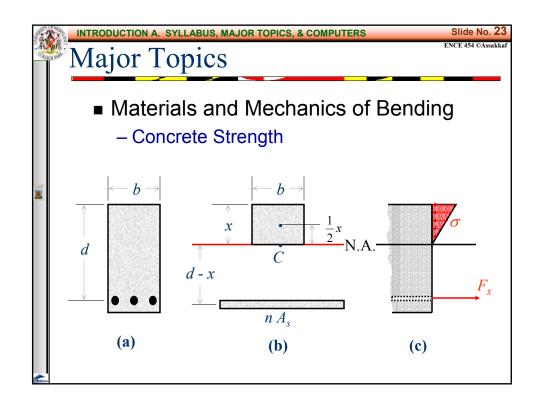
Week	Date	Topic of Discussion	Source
1	Tu, Jan. 27	Introduction to Course (General Overview)	Handout
1	Th, Jan. 29	Introduction to Concrete	Handout
	Tu, Feb. 3	Introduction	Chapter 1
2		Concrete-Producing Materials	Chapter 2
	Th, Feb. 5	Concrete	Chapter 3
3	Tu, Feb. 10	Reinforced Concrete	Chapter 4
3	Th, Feb. 12	Flexure in Beams	Chapter 5
4	Tu, Feb. 17	Flexure in Beam (cont'd)	Chapter 5
	Th, Feb. 19	Flexure in Beams (con't)	Chapter 5
5	Tu, Feb. 24	Shear and Diagonal Tension in Beams	Chapter 6
3	Th, Feb. 26	Shear and Diagonal Tension in Beams (cont'd)	Chapter 6
6	Tu, Mar. 2	Serviceability of Beams and One-Way Slabs	Chapter 8
0	Th, Mar. 4	Serviceability of Beams and One-Way Slabs (cont'd)	Chapter 8

INTRODUCTION A. SYLLABUS, MAJOR TOPICS, & COMPUTERS Slide No. 17 ENCE 454 ©Assakkaf

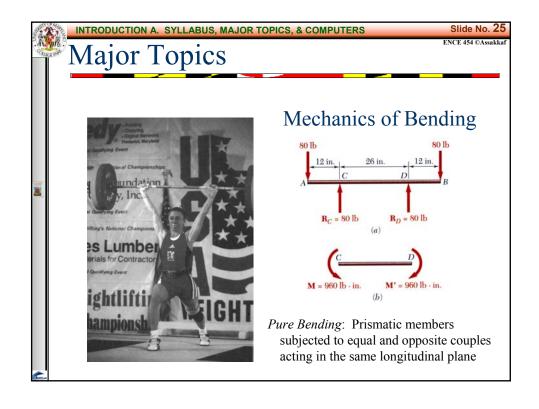

■ Schedule for Lecture (cont'd)

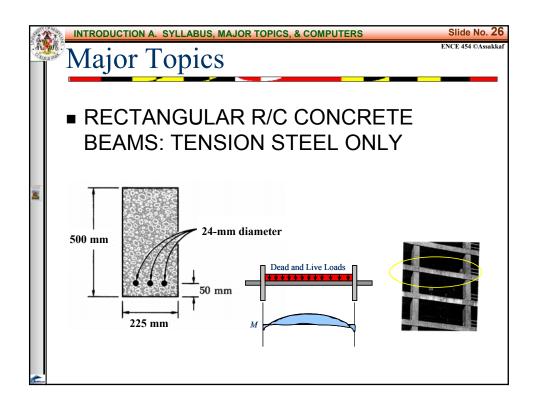

Week	Week Date Topic of Discussion		Source
7	Tu, Mar. 9	Columns: Combined Compression and Bending	Chapter 9
/	Th, Mar. 11	Columns: Combined Compression and Bending (cont'd)	Chapter 9
8	Tu, Mar. 16	Columns: Combined Compression and Bending (cont'd)	Chapter 9
0	Th, Mar. 18	MIDTERM EXAM	
Mar. 21-28 **** S P R N G B R E AK (NO CLASSES) ****			
9	Tu, Mar. 30	Bond Development of Reinforced Bars	Chapter 10
9	Th, Apr. 1	Bond Development of Reinforced Bars (cont'd)	Chapter 10
10	Tu, Apr. 6	Design of Two-Way Slabs and Plates	Chapter 11
10	Th, Apr. 8	Design of Two-Way Slabs and Plates	Chapter 11
11	Tu, Apr. 13	Footings	Chapter 12
11	Th, Apr. 15	Footings	Chapter 12

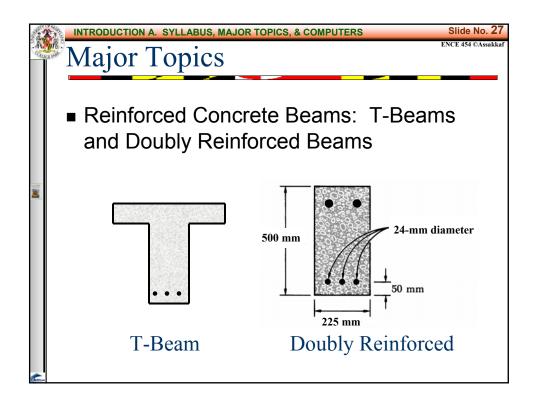

Schedule for Lecture (cont'd)

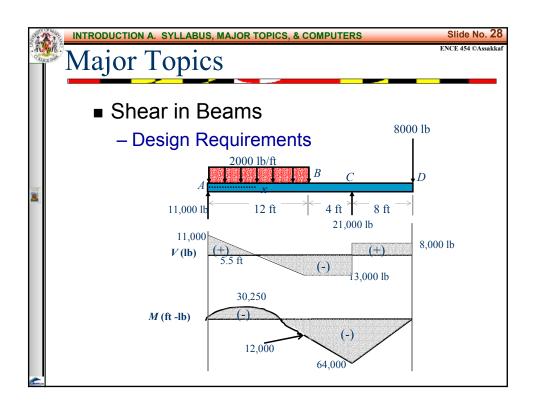

Week	Date	Topic of Discussion	Source
12	Tu, Apr. 20	Design of Retaining Walls	Handout
12	Th, Apr. 22	Design of Retaining Walls (cont'd)	Handout
13	Tu, Apr. 27	Continuous Reinforced Concrete Structures	Chapter 13
13	Th, Apr. 29	Continuous Reinforced Concrete Structures	Chapter 13
14	Tu, May. 4	Introduction to Pre-stressed Concrete	Chapter 14
14	Th, May 6	Review and Project Presentations	
15	Tu, May 11	Project Presentations	
16	W, May 19	FINAL EXAM (Wednesday, 8:00 am - 10:00 am,	
10	w, may 19	EGR (1110)	

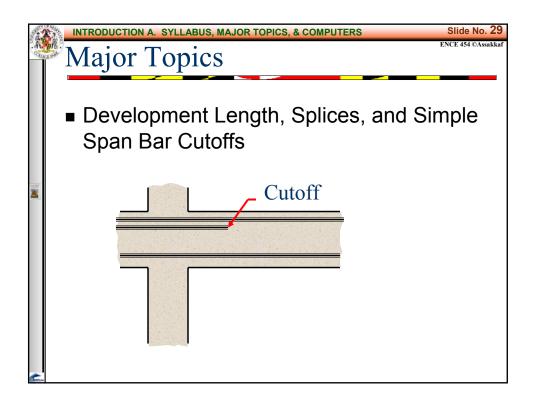
Course Syllabus ■ Course Objective — To understand the behavior of reinforced concrete elements and systems. — To illustrate and integrate design information on reinforced concrete components to enable students to design basic structural systems for both vertical and horizontal loads, and other types of loading.

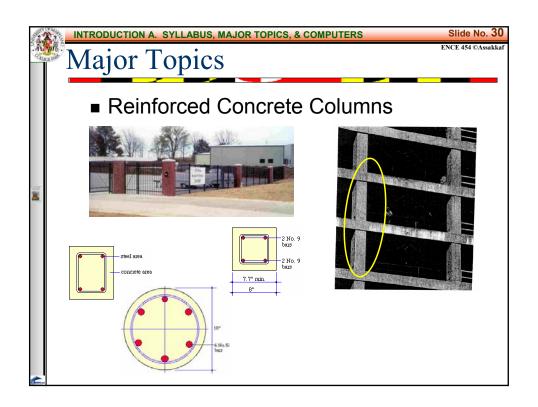


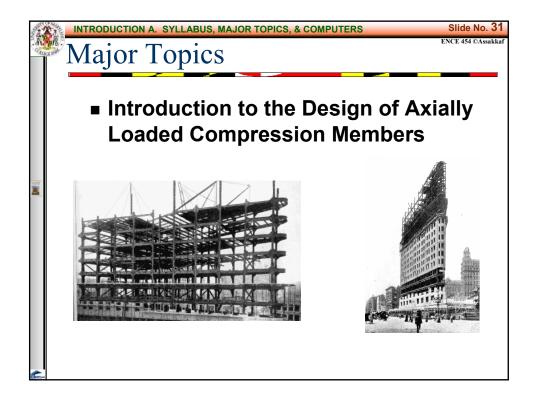


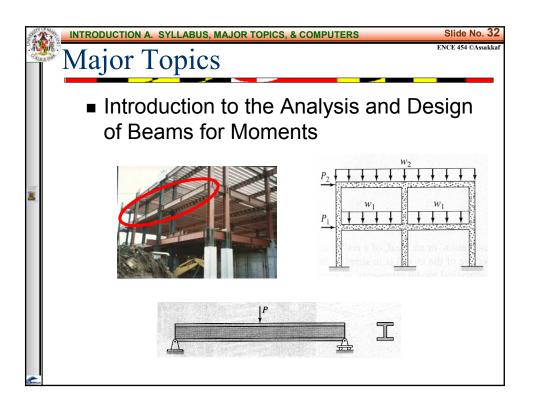


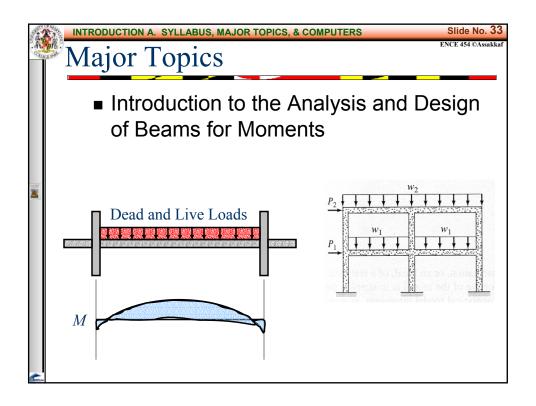


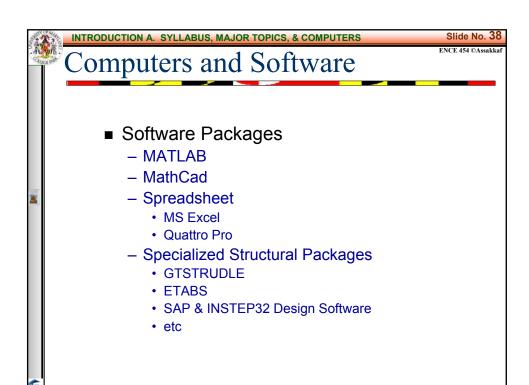












■ Computers Evolution Era (Chapra & Canale 1988) - Third Generation – Integrated circuits (1964 – 1971) - Fourth Generation – Very large scale integration (1971 – present) • Mainframes, Supercomputers • Personal Computers, Microcomputers, and Minicomputers

■ High-level Languages - FORTRAN (introduced by IBM in 1957) • FORTRAN = FORmula TRANslation • Developed for the IBM 704 Computer • Developed by John Backus and a team of 13 other programmers - BASIC - Pascal - Others

