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i~ Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns

— Stress distribution and Whitney’s Block for
beams can applied in this case.

— Figure 6 shows a typical rectangular column
cross-section with strain, stress, and force
distribution diagrams.

— Notice the additional nominal force P, at the
limit failure state acting at an eccentricity e
from the plastic centriod of the section.
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Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-

Slender Columns (cont'd)
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Strength of Eccentrically Loaded
Columns: Axial Load and Bendmg
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Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

5 — Definitions of Terms for Figure 6

¢ = distance to neutral axis
y = distance of geometriccentroid
e = eccentricity of load to geometric centroid

¢’ = eccentricity of load to tension steel

d' = effectivecover of compression steel
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" Strength of Eccentrically Loaded

Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

= — The depth of neutral primarily determines the
strength of the column.

— The equilibrium equations for forces and
moments (see Figure 6) can be expressed as
follows for non-slender (short) columns:

P (at failure)=C, +C, - T, (19)
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| Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

F — Nominal resisting moment M, which is equal
to P, e, can be obtained by writing the moment
equilibrium equation about the plastic
centroid.

— For columns with symmetrical reinforcement,
the plastic centroid is the same as the
geometric centroid.
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| Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

£ Mn:Pne=Cc(y—%j+cs(f—d’)+7’s(d—?) (20)
—since
C. =0.85fha
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| Strength of Eccentrically Loaded
Columns: Axial Load and Bending
m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)
5 — Eqgs. 19 and 20 can be rewritten as
P, =0.85fba+ A f +Af (22)
M, =Pe= 08512%{?—%} ASG-d)+Afd-7) (23)
—where ¥ for rectangular section = //2
=]
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~ Strength of Eccentrically Loaded

Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-

Slender Columns (cont'd)

—In Egs. 22, the depth of the neutral axis c is
assumed to be less than the effective depth d
of the section, and the steel at the tension
face is actual tension.

— Such a condition changes if the eccentricity e
of the axial force P, is very small.
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" Strength of Eccentrically Loaded

Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

— For such small eccentricities, where the total
cross-section is in compression, contribution
of the tension steel should be added to the
contribution of concrete and compression
steel.

— The term A, in Egs. 22 and 23 in such a case
would have a reverse sign since all the steel
is in compression.
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“Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

— It is also assumed that ba — 4, = ba; that is, the
volume of concrete displaced by compression
steel is negligible.

— Symmetrical reinforcement is usually used
such that 4! =4, in order to prevent the
possible mterchange of the compression
reinforcement with the tension reinforcement
during bar cage placement.
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1 Strength of Eccentrically Loaded

Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

— If the compression steel is assumed to have
yielded and 4, =4/, Eqs 22 and 23 can be
rewritten as.

P =0.85f/ha (24)
M,=Pe= o.ssﬂ'ba[y—%j+A;fy(y—d')+ 4,fd-3) (25)

or

M, =Pe =085 fc’ba(d—%)+A; fild-d) (26)
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Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

— Additionally, Eqgs. 24 and 26 can be combined
to obtain a single equation for P, as

! a ! !
M,,=ae=a[d—5j+Asfy(d—d) (27)

— Also, from Eq. 22
Af,-Af+P,
a=PBc= >
0.851'h

(28)
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Strength of Eccentrically Loaded

Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)

5 — When the magnitude of f; or f, is less than /),
the actual stresses can be calculated using
the following equations:

fl=Eé& =E 0.003(c=d") <f, (29a)
C

or

fl=¢E, = 0.003ES(1 —%) <f, (29b)
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“Strength of Eccentrically Loaded
Columns: Axial Load and Bending

m Behavior of Eccentrically Loaded Non-
Slender Columns (cont'd)
—For f.:

7 0.003(d, —c

FoEe - )<r (30a)

C
or

c

f.=¢.E, =0.003E, (i— 1) <f, (30b)
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Trial and Adjustment Procedure for
Analysis (Design) of Columns

Egs. 22 and 23 determine the nominal
axial load P, that can be safely applied at
an eccentricity e for any eccentrically
loaded column. Te following unknowns
can be identified:

1. Depth of the equivalent stress block, a.

2. Stress in compression steel, f!

3. Stress in tension steel, f;

4. P, for the given e, or vice versa
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Tr1a1 and Ad]ustment Procedure for
Analysis (Design) of Columns

The stresses f'and f, can be expressed
in terms of the neutral axis c as in Egs.
29 and 30 and thus in terms of a.

The two remaining unknowns, ¢ and P,,
can be solved using Egs. 22 and 23.

However, combining Egs. 22 and 23 to
28 leads to a cubical equation in terms of
the neutral axis depth ¢. Also, check
must be done if /| and £; are less than f,.
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- Trial and Adjustment Procedure for
Analysis (Design) of Columns

m The Suggested Procedure:

1. For a given section geometry and
eccentricity e, assume a value for the
distance ¢ down to the neutral axis. This
value is a measure of the compression block
depth a since a = B,c.

2. Using the assumed value of ¢, calculate the
axial load P, using Eq. 22 and a = B,c.

3. Calculate f and f,, respectively, using Egs.
29 and 10.
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j "Trial and Ad]ustment Procedure for
Analysis (Design) of Columns

m The Suggested Procedure:

4. Calculate the eccentricity corresponding to
the calculated load P, in Step 3 using Eq.
23. The calculated eccentricity should
match the given eccentricity e. If not, repeat
the steps until a convergence is
accomplished.

5. If the calculated eccentricity is larger than
the given eccentricity, this indicates that the
assumed ¢ and corresponding « are less
than the actual depth.
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-~ Trial and Adjustment Procedure for

Analysis (Design) of Columns

m The Suggested Procedure:

6. In such a case, try another cycle, assuming

F a larger value of c.
=]
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m Strain Limits Zones

— The strain limits for compression-controlled
sections can be represented by the following

= strain distributions across the depth of the
cross sections with ¢, = 0.002 for Grade 60
Steel, or generally ¢, = f/E..

— Figure 8 illustrates the behavior limits
presented in Figure 7.
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Stram Limits Methods
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m Strain Limits Zones

OTHER

Compression | T . | ”I'_egg.mn
Controlled e Controlled
]
£ =0.002 £ =0.005
c c
— =0.600 — =0.375
d d,

Interpolation on c/dy: Spiral ¢ = 0.37 + 0.20/(cdy)
Other ¢ = 0.23 + 0.25/(cdy)

g, =0.003 g, =0.003 g, =0.003
@59 ‘ 8' T ﬁ; 4\ g'
I ) c ¢
| c
. e
g, <0.002 0.002<¢,<0.005 g, 20.005
Strain condition Strain condition Strain condition
for compression- for intermediate for tension-
controlled sections behavior Controlled sections
(Gr 60 steel)
Figure 7. Stresses and Forces in Columns
=
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. Strain L1m1ts Methods
m Strain Limits Zones
080 _ $=0.57+ 67g;
5

Figure 8. Strain Limit Zones and variation of Strength Reduction Factor ¢
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. Strain Limits Methods
m Stress Limits
1) Tension-controlled limit case (g; > 0.005)
g 8 0005 5 (31)
A d e ,+¢, 0.003+0.005
a=c=0375B,d, (32)
dl d'
g =0.003 1-— |=0.003/ 1-2.67—
R R (L5 BEES
fl=¢'E, = 87,000[1 ~2.67 %J <f (34)
t
=]
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=+ Strain Limits Methods

[ ... TN 0]

Stress Limits
1) Compression-controlled limit case (g, = 0.002)

c_ & _ 0.003 060 (35)
d e +e  0.003+0.002
a=c=0.60pd (36)
& =0.003 1-—L
o 0.60d, (37)

fl=¢'E, = 87,000[1 ~1.67 %’] <f (38)

t
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m Stress Limits

— Transition zone for limit strain with
intermediate behavior

* This characterizes compression members in which
the tensile reinforcement 4, has yielded but the
compressive reinforcement 4’ has a stress level
less than f, depending on the geometry of the
section.

* Intermediate ¢ values change linearly with g, from ¢
= 0.90 when ¢,> 0.005 to ¢ = 0.65 for tied columns,
or ¢ = 0.70 for spiral columns when g,< 0.002.
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m Stress L|m|ts

— Transition zone for limit strain with
intermediate behavior (cont’d)

« It should be noted that for nonprestressed flexural
members and for nonprestressed members with
axial load less than O.10ﬂAg, the net tensile strain
g, should not be less than 0.004. Hence, in the
transition zone of Fig. 8, the minimum strain value
in flexural members for determining the ¢ value is
0.004.

« This limit is necessitated, as a ¢ value can
otherwise become so low that additional
reinforcement would be needed to give the
required nominal moment strength.
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 Strain Limits Methods
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= Summary: odes of Failure in Columns

— Based on the magnitude of strain in the
tension face reinforcement (Figure 6), the
section is subjected to one of the following:
1. Tension-controlled state, by initial yielding of the

reinforcement at the tension side, and strain ¢,
greater than 0.005.

2. Transition state, denoted by initial yielding of the
reinforcement at the tension side, but strain with
strain g, value smaller than 0.005 but greater than
0.002.

3. Compression-controlled case by initial crushing
of the concrete at the compression face.
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m Summary: Modes of Failure in Columns
(cont’d)
— Accordingly, in analysis and design, the

following eccentricity limits correspond to the
strain limits presented:

e, > limit e s (¢ = 0.375 d,): tension-controlled

e, < limit e yys.0.002 (¢ = 0.375 d,— 0.60 d,): intermediate transition

e. < limit e} oy, (¢ = 0.60 d,): compression-controlled
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General Load-Moment Relationship |

m Axial Load-Moment Combination
— Assume that P, is applied to a cross
section at an eccentricity e from the
x centroid, as shown in Figs. 9a and 9b.
— Add equal and opposite forces P, at the
centroid of the cross section, as shown in
Fig. 9c.
— The original eccentric force P, may now be
combined with the upward force P, to form
a couple P e, that is a pure moment.
=]
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-~ General Load-Moment Relationship
m Axial Load-Moment Combination
P, Figure 9
= o ]
v ee%}ft ﬁe%f pPe
(b) (c) (d)
7=




’AJ.% - CHAPTER 9c. COMBINED COMPRESSION AND BENDING: COLUMNS Sllde No. 32
-l

General Load-Moment Relationship |

m Axial Load-Moment Combination

— This will leave remaining one force, P,
acting downward at the centroid of the
cross section.

— It can be therefore be seen that if a force
P, is applied with an eccentricity e, the
situation that results is identical to the case
where an axial load of P, at the centroid
and a moment of P, e are simultaneously
applied as shown in Fig. 9d.
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m Axial Load-Moment Combination

— If Mu is defined as the factored moment to
be applied on a compression member
along with a factored axial load of Pu at
the centroid, the relationship between the
two can expressed as

= u 39
= (39)

u
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m Eccentric Axial Loading in A Plane of
Symmetry

Figure 10

Y
+ Cgfx

@
Jis
g

I

O
y YYVY VY

A

(]( X )centric + (f\ )bending

B

F=
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" General Load-Moment Relationship
m Eccentric Axial Loading in A Plane of
Symmetry
The stress due to eccentric loading on a
= beam cross section is given by

_ LD

: (40)
I
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General Load-Moment Relationship |

m Equivalent Force System for Eccentric
Loading

Figure 11
P =48 kN

P=48kN 'y |M, =48(40)=192kN-m
M_ =48(60-35)=120kN -m

Y/ / -
/. V4 7/ -

\ A -

& »4
< 120 mm

=P y
M, =120 kN-1h
X

z

>
M, =192 kN'm

35 mm
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m Analysis of Short Columns: Large
Eccentricity

— The first step in the investigation of short
columns carrying loads at eccentricity is to
determine the strength of given column
cross section that carries load at various
eccentricities.

— For this, the design axial load strength ¢P,
is found, where P, is defined as the
nominal axial load strength at a given
eccentricity.
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General Load-Moment Relationship |

m Example 7

Find the design axial load strength ¢P, for
the tied column for the following conditions:
(a) small eccentricity, (b) pure moment, (c)
e =5in., and (d) the balanced condition.
The column cross section is shown.
Assume a short column. Bending about
the Y-Y axis. Use f. = 4000 psi and f, =
60,000 psi.
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m Example 7 (cont’d)

20”

6—#9 bars
Y
| /

x| IX 14
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i General Load-Moment Relationship
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m Example 7 (cont'd)
(a) Small Eccentricity:

)
A, =14(20)=280in
A, = 6in’(area of 6—#9 bars)

¢Pn = ¢Pn(max)
—0.80¢0.851/(4, = 4, )+ 1.4, ]
=0.80(0.70)[0.85(4)(280 - 6)+(60)(6)]
=723 kips
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" General Load-Moment Relationship

... S e . [ e | I

m  Example 7 (cont'd)
(b) Pure Moment:

The analysis of the pure moment condition
= is similar to the analysis of the case where
the eccentricity e is infinite as shown in
Figure 12.

The design moment ¢M,, will be found
since P, and ¢P, will both be zero.

Assume that A4, is at yield, and then with
reference to Figure 13, then




*i%;’ CHAPTER 9c. COMBINED COMPRESSION AND BENDING: COLUMNS Slide No. 42
A,

=

+* General Load-Moment Relationship -

m Example 7 (cont’d)
Figure 12
| P,
X
e = o
L 4 L 4
A 4 - o
L 4 L 4

=]
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" General Load-Moment Relationship
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.

m Example 7 (cont’d)
C, = concrete compressive force
C, = steel compressive force

= T = steel tensile force
& 0003 v _0003<=2 (41
c—3 c c
Since , ,
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m Example 7 (cont'd) Figure 13
3" 3" 0.85f
. Al : 0.003
- Ty i T\ Y/ T &
‘ «—C,
f T ¢ 0.350 “Tc
|\ > 17" As J/ Zl Zz
M, / e, r
oo o — >
Strain Stress and Force
(a) (b) ©) d)
@,
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m Example 7 (cont'd)

Substituting E, = 29 x 108 psi and &, given
by Eq. 41 into Eq. 42, gives

£1=29x10°(0.003)° 2 =872 (43)
C C

For equilibrium in Figure 13d,

C+C,=T (44)

Substituting into above equation, yields
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" General Load-Moment Relationship |

m Example 7 (cont’d)

(0.85/. )0.85¢)b+ f14! —0.85 114! = f, A, (45a)
r (0.85)4)0.85¢)+87 <> (3)-0.85(4)3)=3(60) (45b)
C
— The above equation can be solved for ¢ to
give
c=3.621n.
and thus,
fl=87 36273 14.90 ksi (compression) (46)
3.62
F=
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Table 5. Areas of Multiple of Reinforcing Bars (in?)

Number Bar number
| 1 [ofbars | #3 #4 $5 #6 #7 #8 #9 #10 [ #11
i 1 011 | 020 | 031 | 044 | 060 | 079 | 100 | 127 | 1.56
2 022 | 040 | o062 | 088 | 120 | 158 | 200 | 254 | 3.12
3 033 | 060 [ 093 | 132 [ 180 | 237 [G.o0)] 381 | 468
4 044 | 080 | 124 | 176 | 240 | 316 | 400 | 508 | 624
5 055 | 100 | 155 | 220 | 300 | 395 | 500 | 635 | 7.80
6 066 | 120 | 186 | 264 | 360 | 474 | 600 | 762 | 936
7 077 | 140 | 217 | 308 | 420 | 553 | 7.00 | 889 | 1092
8 088 | 1.60 | 248 | 352 [ 480 | 632 [ 800 | 10.16 | 1248
9 099 | 180 | 279 | 396 | 540 | 711 | 900 | 1143 | 1404
10 110 | 200 | 310 | 440 | 600 | 790 | 1000 | 1270 | 15.60
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General Load-Moment Relationship |

m Example 7 (cont’d)
Therefore, the forces will be
C, =0.85£/(0.85¢)b = 0.85(4)0.85)3.62)(14) = 146.5 kips
C,=f/4 —0.85f'4 =14.9(3)-0.85(4)(3) = 34.5 kips

— The internal Moments are

M =z, = 1465 {17 - 0.85(23.62)
34.5(14)
12

} =188.8 ft - kips

an = szz =

=40.3 ft - kips
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m Example 7 (cont’d) ,
Figure 13
3" 3" 0.85f"
A ' 0.003
e T
| - «—C,
fw I 0.85¢ “cC
b /o ]
BN 17" A, z -
M, / A T
o0 © — >
Strain Stress and Force
F=
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‘General Load-Moment Relatlonsh
m Example 7 (cont’d)
Therefore,
M =M +M, 6 =188.8+40.3=229 ft - kips
= and
gM | = 0.65(229) =149 ft - kips
F=
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" General Load-Moment Relationship
m Example 7 (cont’d)
(c) The eccentricity e = 5 in:
The situation of e = 5 in. is shown in Figure 14
= Note that in Part (a), all steel was in

compression and in Part (b), the steel on the
side of the column away from the load was in
tension. Therefore, there is some value of the
eccentricity at which steel will change from
tension to compression. Since this is not
known, the strain in Figure 15 is assumed.
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m Example 7 (cont’d)

P, Figure 14
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m Example 7 (cont'd) Figure 15

3" , 0.85f"

v/ Tk

ZZ
12" X Z
l &, T
90— -

Comp./tens.? Assumed Strain Stress and Force

=

\ 4
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m  Example 7 (cont’'d)
The assumptions at ultimate load are
) 1. Maximum concrete strain = 0.003
L 2. & > ¢, therefore, f! =f,
3. & istensile
4. & <g,andthusf <f
These assumptions will be verified later.
The unknown quantities are P, and c.
The forces will be evaluated as follows:

=
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- General Load-Moment Relationship
' 0.003
gS
= Example 7 (cont'd -
ple 7 ( ) T
C, =0.85 f'ab = 0.85(4)(0.85¢ \14)— 40.46¢ J C
- C,=f,4,-085f'A] QL
" =60(3)—0.85(4)(3) =169.8 kips /
T:f‘\Ax :gsESAs :87(d_chx & d-c |
¢ 0003 ¢
:87(17_Cj3:26117_c SV:0.003dC_C,and
C C - B d—-c <10° = d-c
From ) moments =0 in Fig. 7c: ek _(0'003 c ]29 =8
P=C+C,-T
— 40.460+169.8—26117=C 47)

c
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m Example 7 (cont’d)
From > moments = 0, taking moments about 7 in
Figure 15d:
A Pn(lz):Cl[d—;lj+C2(14) (48)
_ 112{40.46{17 - 0'25 C} 169.8(‘14)}
Eqgs. 47 and 48 can be solved simultaneously for
ctogve . _14.86in.
P =733 kips
=
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m Example 7 (cont'd)

Now, the assumptions can be checked:
e g =(14'86_3 j(o.oos): 0.0024
= 14.86

_f, 60,000

g, = ==0.00207 < (¢, =0.0024) OK
*E, 29x10

Therefore, /' = f,, and based on the location
of the neutral axis:

f.=87 17-14.80)_ 1) s346i<60ksi  OK
‘ 14.86
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m Example 7 (cont’d)

— The design moment for an eccentricity of 5
in. can be computed as follows:

P, =¢P, =0.65(733)= 477 kips
oM :¢R1e:4L(5):199 ft - kips
— Therefore, the given column has a design

load-moment combination strength of 477

kips axial load and 199 ft-kips moment.
=]
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m Example 7 (cont’d)
(d) The Balanced Condition Case:

The balanced condition is defined when the
concrete reaches a strain of 0.003 at the same
time that the tension steel reaches its yield
strain, as shown in Fig. 16c.

The value of ¢, can be calculated from

87 87

¢, = d= (17)=10.06 in.
87+ 1, 87 +60
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m Example 7 (cont’d)

Figure 16
3 0.003 081,
- i A, &l %
x P, - )
T e e o M/ ] «—C,
| ., < 0.85¢ “—C
77777777777 L o d=17 i |
WL 4 :
o0 o v >
0.002
Strain Stress and Force
(a) (b) () )
=
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m Example 7 (cont’d)

gl = 10.06-3 (0.003)=0.0021> &, =0.002
10.06 :

Therefore, f|=f, = 60 ksi
The forces can computed as follows:
C, =0.85(4)(0.85)10.06)(14) = 407 kips
C, = 60(3)-0.85(4)(3) =170 kips
T =60(3)=180 kips
B,=C,+C,—T =407+170-180 =397 kips
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m Example 7 (cont’d)

— The value of ¢, may be calculated by
summing moments about 7 as follows:

Ple,+7)= Cl[d— 0‘8250hj+c2(14)

397(e, +7)= 407[17 0'85(120‘06)2} +170(14)

— From which, e, = 12.0 in. Therefore, at the
balanced condition:

¢P, = 0.65(397) = 258 kips
258(12
gM,, = ¢he, = 12)_

=258 ft - kips

f&.ﬁ
5 .'.ﬁ'
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m Example 7 (cont'd)

— The results of the four parts can be tabulated
(see Table 6) and plotted as shown in Fig. 17.

— This plot is called an “interaction diagram”.

— In the plot, any point on the solid line

represents an allowable combination of load
and moment.

— Any point within the solid line represents a
load-moment combination that is also
allowable, but for which this column is
overdesigned.
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m Example 2 (cont’d)
Table 6
Axial load strength Moment strength
e
P (4P, kips) (@P e, ft- kips)
Small 723 0 (small)
Infinite 0 160
5in. 513 214
12 in 278 278
=]
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95, S;i}ps) Figure 17. Column InteractioP Diagram

700 — Compression Failure
£ 600 - =
g —— Balanced condition
g 500 - &
o Il
T 400 - N
=] o
= 300 _aw
k| e~ 1210
2 200 e=¢€ /
100 L 3 . .
“— Tensile Failure
0 e : ‘

0 50 100 150 200 250 300
Bending Strength of Member
Moment ¢P, e (ft - kips)
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m Example 7 (cont’d)

— Any point outside the solid line represents an
unaccepted load-moment combination or a

= load-moment combination for which this

column is underdesigned.

:At% - CHAPTER 9c. COMBINED COMPRESSION AND BENDING: COLUMNS
. Al

— Radial lines from the origin represent various
eccentricities (slope = ¢P,/¢P, or 1/e).

— Any eccentricity less than e, will result in
compression controlling the column, and any

eccentricity greater than e, will result in
tension controlling the column.
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Des1gn of Short Columns: Large
Eccentricity

m The design of a column cross section
using the previous calculation approach
would be a trial-and-error method and
would become exceedingly tedious.

m Therefore, design and analysis aids have

been developed that shorten the process
to a great extent.

m A chart approach has been developed in

ACI Publication SP-17 (97), ACI Design
Handbook.
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Demgn of Short Columns: Large

Eccentricity

m The charts take on the general form of
Figure 17 but are set up to be more
general so that they will remain
applicable if various code criteria
undergo changes.

m These charts can be used for both
analysis and design of columns.

m There are also computer programs
available to aid in the design process.

——————
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“General Case of Columns Relnforced

... S e [ e |

on All Faces: Exact Solution

m In cases where columns are reinforced
with bars on all faces and those where the
reinforcement in the parallel faces is
nosymmetrical, solutions have to be based
on using first principles of Egs. 22 and 23.

m These equations have to be adjusted for
this purpose and strain compatibility
checks for strain in each reinforcing bar
layer have to be performed at all load
levels.
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General Case of Columns Reinforced
on All Faces: Exact Solution

m Figure 18 shows the case of a column
reinforced on all four faces.

& = Assume that
G, = center of gravity of steel compressing force.
G,, = center of gravity of steel tensile force.
F,. = resultant steel compressive force = 2.4’ f;.
— F, = resultant steel tensile force = >4 £,
=]
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General Case of Columns Relnforced

— —

on All Faces: Exact Solution

aat |
=]
=Tl
[=]

& 3

Vg 3

T . ST
Plastic

——— centroid

= M.A,

Figure 18. Column Reinforced with Steel on all Faces: (a) Cross-
Section; (b) Strain; (c¢) Forces




;JI% - CHAPTER 9c. COMBINED COMPRESSION AND BENDING: COLUMNS Slide No. 72

ENCE 454 ©Assakkaf

General Case of Columns Reinforced
on All Faces: Exact Solution

m Equilibrium of the internal and external
forces and moments requires that

})n = 0'85f;”bB16+F;c _Fsr (49)

Pe 085f'bB1 (___Bl j vcyvc+Ftyst (50)
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General Case of Columns Relnforced

— —

on All Faces: Exact Solution

m The strain values in each bar layer are
determined by the linear strain distribution
in Figure 18 to ensure strain compatibility.

m The stress in each reinforcing bar is
obtained using the expression

f.=Ez¢, _Egi 87000i (51)
C

Ja <,
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 Circular Columns
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m The angle 0 subtended by the

compressive block chord shown in Figure

19b is

= Case 1: h
X a<—,0<90°
2
4 h/2-a
0=cos™| ——— (52a)
hi?2
Case 2:
h
a>—,0>90°
2
4 h/2-a J(a—h/2
0=cos'|———| and ¢=cos’'|———| (52b)
hi?2 h/?2
l]
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Py O - U-f:H.'i T P
) . 3 ,?‘r 3
4 Slrdl:r.l.s Stresses Compressive
=
Centroid Gy of Centroid G of
compression zone Compression zone
¥ 73— h'2)

Figure 19. Circular Columns: (a) Strain, Stress and Compression
Block Segment; (b) Compression Segment Chord x-x Geometry
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- Circular Columns
m The area of the compressive segment of
the circular column in Figure 19b is
— 6 , —sinBcosH
| _ 71,2 rad
= A, =h ( 4 ) (53a)
m The moment of area of the compressive
segment about the center of the column is
_ in’ 0
Ay=n| 2 53b
Y [ 9 (53b)
e V= distance of the centroid of compressive block to section centroid
ﬁ + CHAPTER 9c. COMBINED COMPRESSION AND BENDING: COLUMNS Slide No. 77
rh.. I'? ENCE 454 OAssakkaf
- Circular Columns
h.
d, = ﬁ—L(cos 0,.) (54a)
2 2
wherey = (h—2d')/ h
& d

1= 87,000(1——") <f,  (54b)
C

where f] =stress in bars within compressive zone

fi= 87,ooo(i—1) </ (540)

c

where f,; =stress in bars within tension zone below N.A.
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a2 Clrcular Columns

m Expressions for nominal axial force P, and
nominal bending moment M, for circular
| [ columns
X
Pn - 085f c + Zf:w K (553.)
—085f'Ay+ZfSl Sl(——dj (55¢)
Note: moment is taken about the circular column center.
=]
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m Rectangular Concrete Columns
— Assumptions:
1. Reinforcement is symmetrically placed in single
- layers parallel to axis of bending in rectangular
L sections.

2. Compression steel has yielded.

3. Concrete displaced by the compression steel is
negligible compared to the total concrete area in
compression.

4. The depth of the stress block is assumed to be
0.54d.

5. The interaction curve in the compression zone is
a straight line.
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Whitney’s Approximate Solution

m Rectangular Concrete Columns (cont'd)

— If compression controls, the equation for
rectangular sections can be written as

A f bhf!
F = e - +3hefc (56)
+0.5 —+1.18
d-d' d
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Whitney’s Approximate Solution
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m Circular Concrete Columns

— Transform the circular column to an
idealized equivalent rectangular column as
shown in Figure 20.

— For compression failure, the equivalent
rectangular column would have
1. the thickness in the direction of bending equal to
0.8%, where 4 is the outside diameter of the
circular column (Figure 20b).
2. the width of the idealized rectangular column to

be obtained from the same gross area 4, of the
circular column such that b = 4,/0.84.
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m Circular Concrete I\i)/ﬁ .
Columns (cont'd) b, —

A Figure 20. Equivalent column section
(a) given circular section (4,,, total

reinforcement area; (b) equivalent |
rectangular section (compression failure); ==
(c) equivalent column (tension failure) e o o

No—

il
$7 Stremet
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i~ Whitney’s Approximate Solution

m Circular Concrete Columns (cont’'d)

3. the total area of reinforcement 4, to be equally
divided in two parallel layers and placed at a
distance of 2D /3 in the direction of bending, where

A D, is the diameter of the cage measured center to

center of the outer vertical bars.

— For tension failure, use the actual column for
evaluating C,, but place 40% of the total steel
A4, in parallel at a distance 0.75D, as shown In

Figure 20.

— Once the dimensions are established, the
analysis can be similar to rectangular column.
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m Circular Concrete Columns (cont'd)
— For Tension Failure:

2.5h h

5 p :0'85&2[\/[0.&;15(30'38) | PO (0.8560.381 (57)

— For Compression Failure:

A A, f!
p ol sJ: (58)
" 3e 9.6he
—+1.0 5
D, (0.84+0.67D,) +1.18
=
iﬁ: CHAPTER 9c. COMBINED COMPRESSION AND BENDING: COLUMNS Slide No. 85
';_'f";;.* ff 3 . 9 . N ENCE 454 OAssakkaf
i Whitney’s Approximate Solution
m Circular Concrete Columns (cont’d)
— Definitions of Variables for Eqs. 57 and 58
= h = diameter of section
D, = diameter of the reinforcement cage center to center of the outer
vertical bars
e = eccentricity to plastic centroid of section
_ A, _ grosssteel area
Pe - A, ~ gross concrete area
__
m =
0.85f!
E=
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m Example 8

Obtain an equivalent rectangular cross
section for the circular column shown in figure
20a. Assume that D, = 15 in.

thickness of rect.section =0.8x20 =161n.
4, (200 1

=19.63in.
0.8% 4 0.8(20)

width of rect. section =

_2D, _2(15)
33

d-d' =101n.

A =d =
‘ 2
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m Example 9

A concrete circular column 20 in. in diameter

i is reinforced with six No. 8 equally spaced

= bars as show in the figure. Using Whitney’s

approximate approach, compute the nominal

axial load P, for (a) eccentricity e = 16.0 in. and

(b) eccentricity e = 5.0 in.

Given: S
. =4000 psi
f, =60,000 psi \

2.51n.

—-

n.

/ 6 #3 \ 20
/

~_—~
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- Whitney’s Approximate Solution

m  Example 9 (cont'd)

a) e =16.0in. with axial load 6 in. outside the
circular section. It can be assumed that the
2 section is tension-controlled.

D, =20-2(2.5)=15in.
A_, _areaof 6 No.8 4.74 474

t
Py == = =0.015
4, 4, ah” - 7(20)
4 4
=]
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- Whitney’s Approximate Solution
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Table 5. Areas of Multiple of Reinforcing Bars (in?)

Number Bar number

. ofbars | #3 #4 $5 #6 #7 #8 #9 #10 | #11

X 1 011 | 020 | 031 | 044 | 060 | 079 | 100 | 127 | 156
2 022 | 040 | o062 | 088 | 120 | 158 | 200 | 254 | 3.12
3 033 | 060 [ 093 | 132 [ 180 | 237 | 3.00 | 381 | 468
4 044 | 080 | 124 | 176 | 240 | 316 | 400 | 508 | 624
5 055 | 100 | 155 | 220 | 300 | 395 | 500 | 635 | 7.80
6 066 | 120 | 186 | 264 | 360 [(474)] 600 | 762 | 936
7 077 | 140 | 217 | 308 | 420 | 553 | 7.00 | 889 | 1092
8 088 | 1.60 | 248 | 352 | 480 | 632 [ 800 | 10.16 | 1248
9 099 | 180 | 279 | 396 | 540 | 7.1 | 9.00 | 1143 | 14.04
10 110 | 200 | 310 | 440 | 600 | 790 | 1000 | 12.70 | 15.60
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i~ Whitney’s Approximate Solution

m  Example 9 (cont'd)
Using Eq. 57, yields

/s 60,000
m = - =
0.85f’ 0.85(4000)

2
D,
P, =0.85fn> (0'856—0.38 Nt e 0'856—0.38j
h 2.5h h

p- 0'85(4)(20)2[ \/(0.825(()16)_ 0'38j2 . 0.015(17.65)15) _(0.85(16)_ 0'38)]

=17.65

2.5(20) 20
=151.79 kips
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m  Example 9 (cont’d)

b) e =5.0in. with axial load inside the circular
section. It can be assumed that the section
is compression-controlled.

., 7(20) .,
total steel area 4, =4.741n", A4, = =314.21in
Using Eq. 58, gives

__ A, A S
Fi=gg 9.6he
+1.0 5
D, (0.82+0.67D,) +1.18
_ 4.74(60) 314.2(4) B .
= 30) + 9.6(20)5) =626.58 kips
=41 >+1.18
15 (0.8x20+0.67x15)




