

CONCRETE.com

ENCE 454 – Design of Concrete Structures

Department of Civil and Environmental Engineering
University of Maryland, College Park

ENCE 454 ©Assakkaf

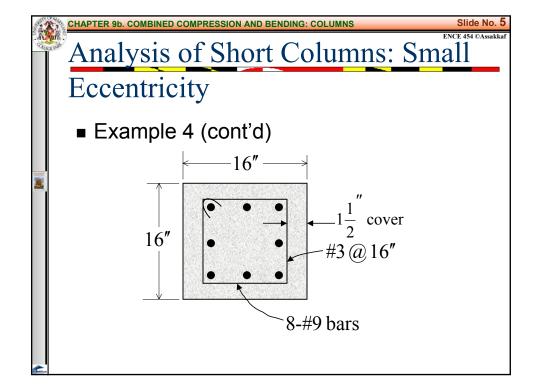
Analysis of Short Columns: Small Eccentricity

- Procedure for Analysis of Short Columns with Small Eccentricities
 - 1. Check ρ_g within acceptable limits as stipulated by the ACI Code:

$$0.01 \le \rho_g \le 0.08$$

2. Check the number of bars within acceptable limits for the clear space (see Table 2, Table 9, Handout). The minimum number is four for bars with rectangular or circular ties and six for bars enclosed by spirals.

CHAPTER 9b. COMBINED COMPRESSION AND BENDING: COLUMNS Slide No. 3 ENCE 454 CASSRIKAF Analysis of Short Columns: Small Eccentricity


- 3. Calculate the maximum design axial load strength $\phi P_{n(\text{max})}$.
- 4. Check the lateral reinforcing. For ties, check size, spacing, and arrangement. For spirals, check ρ_s , and clear distance.

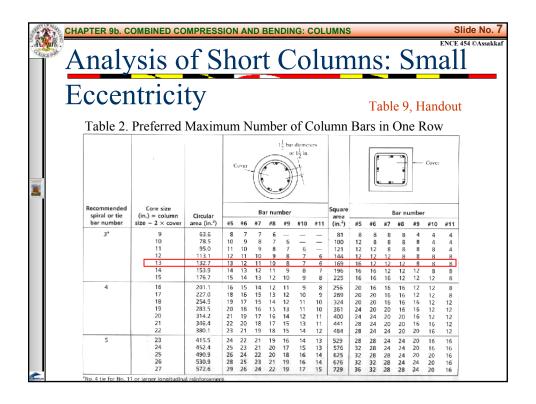
ENCE 454 ©Assakka

Analysis of Short Columns: Small Eccentricity

■ Example 4

Find the maximum design axial load strength for the tied column of cross section shown in the figure. Check the ties. Assume a short column. The materials strength specified are $f_c' = 4000$ psi and $f_y = 60,000$ psi for both longitudinally steel and ties.

ENCE 454 ©Assakkaf


Analysis of Short Columns: Small Eccentricity

- Example 4 (cont'd)
 - Check the steel ratio for longitudinal steel:

$$\rho_g = \frac{A_{st}}{A_g} = \frac{8.00}{(16)^2} = 0.0313$$

$$0.01 < 0.0313 < 0.08$$
OK

2. From Table 1 (Table 9, Handout), using a 13-in. core (column size less cover on each side), the maximum number of No. 9 bars is eight. This is OK.

ENCE 454 ©Assakkaf

Analysis of Short Columns: Small Eccentricity

- Example 4 (cont'd)
 - 3. The maximum design axial load strength may now be computed as follows:

$$\phi P_{n(\text{max})} = 0.80 \phi [0.85 f' (A_g - A_{st})_c + f_y A_{st}]$$

$$= 0.80 (0.65) [0.85 (4) (256 - 8) + (60) (8)]$$

$$= 688 \text{ kips}$$

 Check the ties. The size of No. 3 is OK for longitudinal bar size up to No. 10. The spacing of the ties must not exceed the smaller of

CHAPTER 9b. COMBINED COMPRESSION AND BENDING: COLUMNS

Slide No.

ENCE 454 ©Assakka

Analysis of Short Columns: Small Eccentricity

Example 4 (cont'd)

48 tie-bar diameter = 38 (3/8) = 18 in.

16 longitudinal-bar diameter = 16 (1.128) = 18 in.

Least column dimension = 16 in. ← smallest

Therefore, the tie spacing is OK.

Check clear distance:

clear distance =
$$\frac{16-2(1.5)-2(3/8)-3(1.128)}{2}$$

= 4.4 in. < 6 in. OK

ENCE 454 ©Assakkaf

Analysis of Short Columns: Small Eccentricity

■ Example 5

A short circular spiral column having a diameter of 18 in. is reinforced with eight No. 9 bars. The cover is 1 ½ in., and the spiral is 3/8 in. in diameter spaced 2 in. o.c. Find the maximum design axial load strength and check the spiral. Use $f_c' = 3000$ psi and $f_v = 40,000$ psi

CHAPTER 9b. COMBINED COMPRESSION AND BENDING: COLUMNS

Slide No. 11

ENCE 454 ©Assakk

Analysis of Short Columns: Small Eccentricity

- Example 5 (cont'd)
 - 1. Check the steel ratio for longitudinal steel:

$$\rho_g = \frac{A_{st}}{A_g} = \frac{8.00}{\pi (9)^2} = 0.0314$$

$$0.01 < 0.0314 < 0.08$$
 OK

From Table 2 (Table 9 Handout), and for circular column, the maximum number of # 9 bars is 10. This is OK

Analysis of Short Columns: Small **Eccentricity**

Table 9, Handout

Table 2. Preferred Maximum Number of Column Bars in One Row

Recommended spiral or tie bar number	Core size		1½ bar diameters or 1½ in. Cover							Cover							
		Circular area (in.²)	Bar number					Square	Bar number								
	size - 2 × cover		#5	#6	#7	#8	#9	#10	#11		#5	#6	#7	#8	#9	#10	#11
3"	9	63.6	8	7	7	6	_	_	_	81	8	8	8	В	4	4	4
	10	78.5	10	9	8	7	6	_	_	100	12	8	8	8	8	4	4
	11	95.0	11	10	9	8	7	6	-	121	12	12	8	8	8	8	4
	12	113.1	12	11	10	9	8	7	6	144	12	12	12	8	8	8	8
	13	132.7	13	12	11	10	8	7	6	169	16	12	12	12	8	8	8
	14	153.9	14	13	12	11	9	8	7	196	16	16	12	12	12	8	8
	15	176.7	15	14	13	12	10	9	8	225	16	16	16	12	12	12	8
4	16	201.1	16	15	14	12	11	9	8	256	20	16	16	16	12	12	8
	17	227.0	18	16	15	13	12	10	9	289	20	20	16	16	12	12	8
	18	254.5	19	17	15	14	12	11	10	324	20	20	15	16	16	12	12
	19	283.5	20	18	16	15	13	11	10	361	24	20	20	16	16	1.2	12
	20	314.2	21	19	17	16	14	12	11	400	24	24	20	20	16	1.2	12
	21	346.4	22	20	18	17	15	13	11	441	28	24	20	20	16	16	12
	22	380.1	23	21	19	18	15	14	12	484	28	24	24	20	20	16	12
5	23	415.5	24	22	21	19	16	14	13	529	28	28	24	24	20	16	16
	24	452.4	25	23	21	20	17	15	13	576	32	28	24	24	20	16	16
	25	490.9	26	24	22	20	18	16	14	625	32	28	28	24	20	20	16
	26	530.9	28	25	23	21	19	16	14	676	32	32	28	24	24	20	16
	27	572.6	29	26	24	22	19	17	15	729	36	32	28	28	24	20	16

Slide No. 13

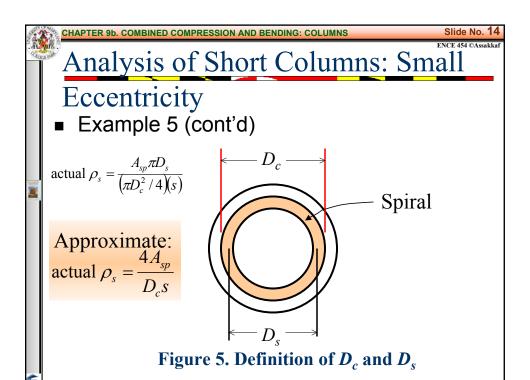
Analysis of Short Columns: Small

Eccentricity

Example 5 (cont'd)

$$A_g = \frac{\pi D^2}{4} = \frac{\pi (18)^2}{4} = 254.5 \text{ in}^2$$

3. The maximum design axial load strength may now be computed as follows:


$$\phi P_{n(\text{max})} = 0.85 \phi \left[0.85 f' \left(A_g - A_{st} \right)_c + f_y A_{st} \right]$$

$$= 0.85 (0.70) \left[0.85 (3) (254.5 - 8) + (40)(8) \right]$$

$$= 564 \text{ kips}$$

4. Check spirals: 3/8 in. spiral

actual
$$\rho_s = \frac{4A_{sp}}{D_c s} = \frac{4(0.11)}{15(2)} = 0.0147$$

Analysis of Short Columns: Small **Eccentricity**

Example 5 (cont'd)

$$\rho_{s(\text{min})} = 0.45 \left(\frac{A_g}{A_c} - 1 \right) \frac{f_c'}{f_y} = 0.45 \left(\frac{254.5}{176.7} - 1 \right) \frac{3}{40} = 0.0149$$

 $\rho_{s(\text{min})} = 0.0149 \approx 0.0147 \text{ OK (slightly underreinforced)}$

Clear distance between spiral loops:

clear distance =
$$2 - \frac{3}{8} = 1.63$$
 in $1'' < 1.63'' < 3''$

Therefore, 3/8 in dia. spiral @ 2-in. is OK

ENCE 454 ©Assakkaf

Design of Short Columns: Small Eccentricity

- The design of reinforced concrete columns involves the following:
 - Proportioning of the steel and concrete areas.
 - Selection of properly sized and spaced ties or spirals.
- Since the ratio of steel to concrete area must fall within a given range:

$$0.01 \le \rho_g \le 0.08$$

CHAPTER 9b. COMBINED COMPRESSION AND BENDING: COLUMNS

Slide No. 17

ENCE 454 ©Assakka

Design of Short Columns: Small Eccentricity

The main strength equation is modified as follows to include this term:

For tied column:

$$\phi P_{n(\text{max})} = 0.80 \phi \left[0.85 f' \left(A_g - A_{st} \right)_c + f_y A_{st} \right]$$
 (13)

$$\rho_g = \frac{A_{st}}{A_g} \Rightarrow A_{st} = \rho_g A_g \tag{14}$$

Therefore,

$$\phi P_{n(\text{max})} = 0.80 \phi \left[0.85 f' \left(A_g - \rho A_g \right)_c + f_y \rho_g A_g \right]
= 0.80 \phi A_g \left[0.85 f' \left(1 - \rho \right)_c + f_y \rho_g \right]$$
(15)

ENCE 454 ©Assakk

Design of Short Columns: Small Eccentricity

■ Since

$$P_u \le \phi P_{n(\text{max})} \tag{16}$$

an expression can be written for required A_g in terms of the material strength, P_u and ρ_g .

Design of Short Columns: Small Eccentricity

■ For Tied Columns:

required
$$A_g = \frac{P_u}{0.80\phi \left[0.85 f_c' \left(1 - \rho_g\right) + f_v \rho_g\right]}$$
 (17)

■ For Spiral Columns:

required
$$A_g = \frac{P_u}{0.85\phi[0.85f_c'(1-\rho_g) + f_y\rho_g]}$$
 (18)

ENCE 454 ©Assakkaf

Design of Short Columns: Small Eccentricity

- Procedure for Design of Short Columns with Small Eccentricities
 - 1. Establish the material strengths. Establish the desired ρ_{g} (if any).
 - 2. Establish the factored axial load P_n .
 - 3. Determine the required gross column area A_g .
 - 4. Select the column dimensions. Use full-inch increments.

CHAPTER 9b. COMBINED COMPRESSION AND BENDING: COLUMNS Slide No. 21 Design of Short Columns: Small Eccentricity

- 5. Find the load carried by the concrete and the load required to be carried by the longitudinal steel. Determine the required longitudinal steel area. Select the longitudinal steel.
- 6. Design the lateral reinforcing (ties or spiral).
- 7. Sketch the design.

ENCE 454 ©Assakkaf

Design of Short Columns: Small Eccentricity

■ Example 6

Design a square-tied column to carry axial service loads of 320 kips dead load and 190 kips live load. There is no identified applied moment. Assume that the column is short. Use ρ_g about 0.03, $f_c'=4000$ psi, and $f_v=60,000$ psi.

CHAPTER 9b. COMBINED COMPRESSION AND BENDING: COLUMNS

Slide No. 23

ENCE 454 ©Assakkaf

Design of Short Columns: Small

Eccentricity

- Example 6 (cont'd)
 - 1. Given values are as follows:

$$\rho_{\rm g}$$
 =0.03, $f_{\rm c}'$ = 4000 psi, and $f_{\rm y}$ = 60,000 psi

2. The factored axial load is

$$P_u = 1.2(320) + 1.6(190) = 688 \text{ kips}$$

3. The required gross column area is (from Eq. 17)

required
$$A_g = \frac{P_u}{0.80\phi \left[0.85 f_c' \left(1 - \rho_g\right) + f_v \rho_g\right]}$$

ENCE 454 ©Assakkaf

Design of Short Columns: Small Eccentricity

■ Example 6 (cont'd)

required
$$A_g = \frac{688}{0.80(0.65)[0.85(4)(1-0.03)+(60)(0.03)]} = 260 \text{ in}^2$$

4. The required size of a square column will be

$$\sqrt{260} = 16.12 \text{ in.}$$

Use a 16-in.-square column. This choice will require that the actual ρ_g be slightly in excess of 0.03

actual
$$A_g = (16)^2 = 256 \text{ in}^2$$

CHAPTER 9b. COMBINED COMPRESSION AND BENDING: COLUMNS

Slide No. 25

ENCE 454 ©Assakkaf

Design of Short Columns: Small

Eccentricity

- Example 6 (cont'd)
 - 5. The load on the concrete is

load on concrete =
$$0.80\phi(0.85f_c')A_g(1-\rho_g)$$

= $0.80(0.65)(0.85)(4)(256)(1-0.03)$
= 439 kips

Therefore, the load to be carried by the steel is

load by steel =
$$688 - 439 = 249 \text{ kips}$$

ENCE 454 ©Assakka

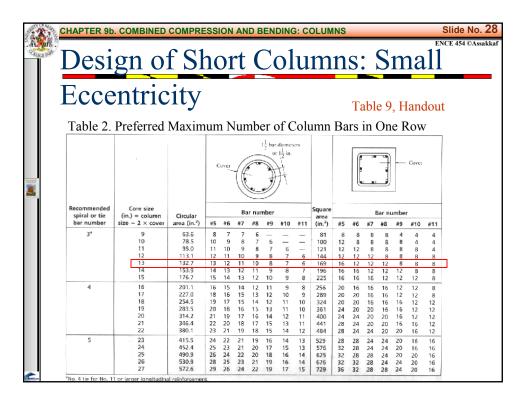
Design of Short Columns: Small Eccentricity

■ Example 6 (cont'd)

The required steel area can be calculated from

required
$$A_{st} = \frac{249}{0.80(0.65)(60)} = 7.98 \text{ in}^2$$

Use eight No. 10 bars (A_{st} =10.16 in²), see Table 3.


Table 2 (Table 9 Handout) indicates a maximum of eight No. 10 bars for a 13-in. core.

Design of Short Columns: Small

Eccentricity

Table 3. Areas of Multiple of Reinforcing Bars (in²)

Number	Bar number										
of bars	#3	#4	\$5	#6	#7	#8	#9	#10	#11		
1	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56		
2	0.22	0.40	0.62	0.88	1.20	1.58	2.00	2.54	3.12		
3	0.33	0.60	0.93	1.32	1.80	2.37	3.00	3.81	4.68		
4	0.44	0.80	1.24	1.76	2.40	3.16	4.00	5.08	6.24		
5	0.55	1.00	1.55	2.20	3.00	3.95	5.00	6.35	7.80		
6	0.66	1.20	1.86	2.64	3.60	4.74	6.00	7.62	9.36		
7	0.77	1.40	2.17	3.08	4.20	5.53	7.00	8.89	10.92		
8	0.88	1.60	2.48	3.52	4.80	6.32	8.00	(10.16)	12.48		
9	0.99	1.80	2.79	3.96	5.40	7.11	9.00	11.43	14.04		
10	1.10	2.00	3.10	4.40	6.00	7.90	10.00	12.70	15.60		

Design of Short Columns: Small Eccentricity Example 6 (cont'd) 6. Design the ties. From Table 2 (Table 9, Handout), select a No. 3 tie. The spacing must be greater than the smaller of 48 tie - bar diameter = 48(3/8) = 18 in. 16 longitudinal - bar diamater = 16(1.27) = 20.3 in. least column dimension = 16 in. Controls

ENCE 454 ©Assakka

Design of Short Columns: Small Eccentricity

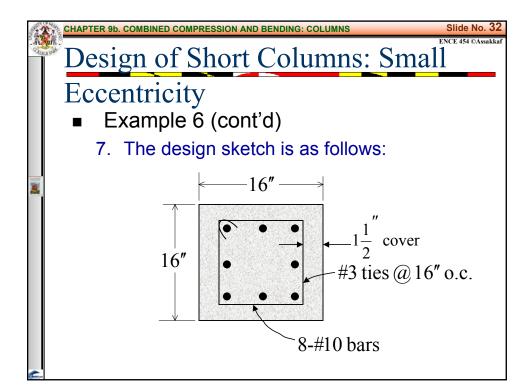
Example 6 (cont'd)

Use No. 3 ties spaced 16 in. o.c. Check the arrangement with reference to the figure. The clear space between adjacent bars in the same face is

2 (1.5 in.) Cover
$$\frac{2 \times \text{dia. of No. 3 tie}}{2} = 4.22 \text{ in.} < 6.0 \text{ in.}$$

$$\frac{2 \times \text{dia. of No. 3 tie}}{2} = 4.22 \text{ in.} < 6.0 \text{ in.}$$

$$\frac{2 \times \text{dia. of No. 3 tie}}{2} = 4.22 \text{ in.} < 6.0 \text{ in.}$$


Therefore, no additional ties are required by the ACI Code.

Design of Short Columns: Small Eccentricity

■ Example 3 (cont'd)

Table 4. Reinforced Steel Properties

Bar number	3	4	5	6	7	8	9	10	11	14	18
Unit weight	0.376	0.668	1.043	1.502	2.044	2.670	3.400	4.303	5.313	7.650	13.60
per foot (lb)											
Diameter (in.)	0.375	0.500	0.625	0.750	0.875	1.000	1.128	1.270	1.410	1.693	2.257
Area (in ²)	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56	2.25	4.00

