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Doubly Reinforced Sections

Introduction
– If a beam cross section is limited because of 

architectural or other considerations, it may 
happen that concrete cannot develop the 
compression force required to resist the given 
bending moment.

– In this case, reinforcing steel bars are added 
in the compression zone, resulting in a so-
called doubly reinforced beam, that is one 
with compression as well as tension 
reinforcement (Figure 21)
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Doubly Reinforced Sections
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Figure 22. Doubly Reinforced Beam Sections
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Doubly Reinforced Sections

Introduction (cont’d)
– The use of compression reinforcement has 

decreased markedly with the use of strength 
design methods, which account for the full 
strength potential of the concrete on the 
compressive side of the neutral axis.

– However, there are situations in which 
compressive reinforcement is used for 
reasons other than strength.
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Doubly Reinforced Sections

Introduction (cont’d)
– It has been found that the inclusion of some 

compression steel has the following 
advantages:

• It will reduce the long-term deflections of members.
• It will set a minimum limit on bending loading
• It act as stirrup-support bars continuous through 

out the beam span
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Doubly Reinforced Sections
Introduction (cont’d)
– Another reason for placing reinforcement in 

the compression zone is that when beams 
span more than two supports (continuous 
construction), both positive and negative 
moments will exist as shown in Figure 23.

– In Figure 23, positive moments exist at A and 
C; therefore, the main tensile reinforcement 
would be placed in the bottom of the beam.

– At B, however, a negative moment exists and 
the bottom of the beam is in compression.  
The tensile reinforcement, therefore, must be 
placed near the top of the beam.
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Doubly Reinforced Sections

Introduction (cont’d)
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress
– The basic assumption for the analysis of 

doubly reinforced beams are similar to 
those for tensile reinforced beams.

– The steel will behave elastically up to the 
point where the strain exceeds the yield 
strain εy. As a limit    = fy when the 
compression strain    ≥ εy.

– If    < εy, the compression steel stress will 
be =     Es.

sf ′
sε ′

sε ′
sf ′ sε ′
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– If, in a doubly reinforced beam, the tensile 

steel ratio ρ is equal to or less than ρb, the 
strength of the beam may be approximated 
within acceptable limits by disregarding the 
compression bars.

– The strength of such a beam will be 
controlled be tensile yielding, and the lever 
arm of the resisting moment will be little 
affected by the presence of comp. bars.
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– If the tensile steel ratio ρ is larger than ρb, a 

somewhat elaborate analysis is required.
– In Fig. 24a, a rectangular beam cross 

section is shown with compression steel 
placed at distance     from the compression 
face and with tensile steel As at the 
effective depth d.

sA′

d ′
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Doubly Reinforced Sections
Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)

Cross Section

(a)

Strain at Ultimate
Moment

(b)

Concrete-Steel
Couple

(c)

Steel-Steel
Couple

(d)

Figure 24

d

b

sA

sA′







 −=

21
adZ

εc = 0.003

εs

c a

cf ′85.0

abfC c′= 85.01

ys fAT 11 =

ss fAC ′′=2

ys fAT 22 =

sε′

d ′

ddZ ′−=2

N.A
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Doubly Reinforced Sections
Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– Notation for Doubly Reinforced Beam:

= total compression steel cross-sectional area
d = effective depth of tension steel

= depth to centroid of compressive steel from compression fiber
As1 = amount of tension steel used by the concrete-steel couple
As2 = amount of tension steel used by the steel-steel couple
As = total tension steel cross-sectional area (As = As1 + As2)
Mn1 = nominal moment strength of the concrete-steel couple
Mn2 = nominal moment strength of the steel-steel couple
Mn = nominal moment strength of the beam
εs = unit strain at the centroid of the tension steel

= unit strain at the centroid of the compressive steel

sA′

d ′

sε′
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Doubly Reinforced Sections
Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– Method of Analysis:

• The total compression will now consist of two 
forces:
C1, the compression resisted by the concrete
C2, the compression resisted by the steel

• For analysis, the total resisting moment of the 
beam will be assumed to consist of two parts or two 
internal couples: The part due to the resistance of 
the compressive concrete and tensile steel and the 
part due to the compressive steel and additional 
tensile steel.
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Doubly Reinforced Sections
Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– The total nominal capacity may be derived 

as the sum of the two internal couples, 
neglecting the concrete that is displaced by 
the compression steel.

– The strength of the steel-steel couple is 
given by (see Figure 24)

222 ZTM n = (36)
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Doubly Reinforced Sections
Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)

Cross Section

(a)

Strain at Ultimate
Moment

(b)

Concrete-Steel
Couple

(c)

Steel-Steel
Couple

(d)

Figure 24

d

b
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
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
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N.A
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Doubly Reinforced Sections
Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)

– The strength of the concrete-steel couple is 
given by

( )
2222

22  assuming        

ssysss

ysysn

AAfAfATC

ffddfAM

=′⇒=′′⇒=

=′−=

Therefore,

( )ddfAM ysn ′−′=2 (37)

111 ZTM n = (38)
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)

( ) 



 −′−=

′−=

′=
−=⇒+=

=





 −=

2
                     

Therefore
                           

 then, since

 assuming       
2

1

1

2

2121

11

adfAAM

AAA
AA

AAAAAA

ffadfAM

yssn

sss

ss

ssssss

ysysn

(39)

CHAPTER 5d. FLEXURE IN BEAMS Slide No. 17
ENCE 454 ©Assakkaf

Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– Nominal Moment Capacity

From Eqs. 37 and 39, the nominal moment 
capacity can be evaluated as

( ) ( )ddfAadfAA

MMM

ysyss

nnn

′−′+



 −′−=

+=

2
       

21 (40)

This equation is valid only if     yieldssA′
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– Eq. 40 is valid only if     yields.  Otherwise, the 

beam has to be treated as a singly reinforced 
beam neglecting the compression steel, or 
one has to find the actual stress     in the 
compression reinforcement     and use the 
actual force in the moment equilibrium 
equation.

sA′

sf ′
sA′
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– Determination of the Location of Neutral 

Axis:

( )

( ) ( )
bf

fA
f

df
bf
fAA

a

fAabffA
CCT

ac

c

ys

c

y

c

yss

yscys

′
=

′

′−
=

′

′−
=

′+′=
+=

=

85.085.0
ρρ

85.0

Therefore,

85.0

β

1

21

1 bd
A

bd
A ss ′

=′= ρ  and   ρ
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– Location of Neutral Axis c

(41)( ) ( )

( ) ( )
c

y

c

yss

c

y

c

yss

f
df

bf
fAAac

f
df

bf
fAA

a

′

′−
=

′

′−
==

′

′−
=

′

′−
=

111 β85.0
ρρ

β85.0β

85.0
ρρ

85.0

(42)

NOTE: if          4,000 psi, then β1 = 0.85, otherwise see next slide≤′cf
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Doubly Reinforced Sections

Condition I: Tension and Compression 
Steel Both at Yield Stress (cont’d)
– The value of β1 may determined by









>′
≤′<′×−

≤′

=
psi 000,8for                          0.65

psi 000,8psi 4,000for          105051

psi 000,4for                          85.0

β

c

c
5

c

1

f
ff.

f

c
- (43)
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Doubly Reinforced Sections

Strain-Compatibility Check
– For      to yield, the strain     in the 

compression steel should be greater than or 
equal to the yield strain of reinforcing steel, 
which is

– The strain     can be calculated from similar 
triangles.  Referring to Figure 24,

sA′ sε′

s

y
s E

f
=′ε

sε′







 ′
−=






 ′−

=′
c
d

c
dc

s 1003.0003.0ε

(44)

(45)
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Doubly Reinforced Sections

Strain-Compatibility Check (cont’d)
– Substituting c of Eq. 42 into Eq. 45, gives

– For compression steel to yield, the following 
condition must be satisfied:

( ) 











′−
′′

−=





 ′
−=′

y

c
s df

df
c
d

ρρ
β185.01003.01003.0ε (46)

61029
   or                

×
≥′≥′ y

s
s

y
s

f
E
f

εε
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Doubly Reinforced Sections
Strain-Compatibility Check (cont’d)
– The compression steel yields if

( )

( ) 000,87ρ-ρ
0.85β-1              

or

1029ρ-ρ
0.85β-10.003               

or
1029

ε                   

1

6
1

6

y

y

c

y

y

c

y
s

f
df
df

f
df
df

f

≥
′

′′

×
≥













′
′′

×
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Doubly Reinforced Sections
Strain-Compatibility Check (cont’d)

( )

( )

( )  
000,87

000,87
ρ-ρ

0.85β             
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1
000,87ρ-ρ

0.85β             
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000,87ρ-ρ

0.85β-1              

1

1
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−
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′
′′

−

−≥
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′′
−

≥
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′′
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y
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y
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c

y

y
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f
df
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f
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f
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Doubly Reinforced Sections
Strain-Compatibility Check (cont’d)

( )

( )

( ) 










−
′′

≥′

−
−≤

′
′′

−
≥

′
′′

−

yy

c

y

y

c

y

y

c

fdf
df

f
df
df

f
df
df

000,87
000,870.85βρ-ρ            

or

000,87
000,87

ρ-ρ
0.85β            

or
000,87

000,87
ρ-ρ

0.85β             

or

1

1

1
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Doubly Reinforced Sections

Strain-Compatibility Check (cont’d)
If compression steel is to yield, then the 
following condition must be satisfied:

( ) 










−
′′

≥′
yy

c

fdf
df

000,87
000,870.85βρ-ρ 1 (47)
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Doubly Reinforced Sections

Strain-Compatibility Check (cont’d)
– If     is less than εy the stress in the 

compression steel,     , can be computed as
sε′

sf ′

( ) 











′−
′′

−××=′

′×=′=′

df
dff

Ef

y

c
s

ssss

ρρ
β85.01003.01029       

or
ε1029ε       

16

6

(48)
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Doubly Reinforced Sections

Condition II: Compression Steel Below 
Yield Stress
– The preceding equations are valid only if 

the compression steel has yielded when 
the beam reaches its ultimate strength.

– In many cases, however, such as for wide, 
shallow beams reinforced with higher-
strength steels, the yielding of compression 
steel may not occur when the beam 
reaches its ultimate capacity.
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Doubly Reinforced Sections
Condition II: Compression Steel Below 
Yield Stress
– It is therefore necessary to to develop 

more generally applicable equations to 
account for the possibility that the 
compression reinforcement has not yielded 
when the doubly reinforced beam fails in 
flexure.

– The development of these equations will 
be based on

ys εε <′ (49)
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Doubly Reinforced Sections
Condition II: Compression Steel Below 
Yield Stress
– Development of the Equations for 

Condition II
• Referring to Fig. 24,

• But

• and

( ) sscys AfbaffA
CCT

′′+′=
+=

85.0
21

ca 1β=

( )
sss E

c
dcEf

s 



 ′−

=′=′
003.0ε

(50)

(51)

(52)
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Doubly Reinforced Sections
Condition II: Compression Steel Below 
Yield Stress

Cross Section

(a)

Strain at Ultimate
Moment

(b)

Concrete-Steel
Couple

(c)

Steel-Steel
Couple

(d)

Figure 24

d

b

sA

sA′







 −=

21
adZ

εc = 0.003

εs

c a

cf ′85.0

abfC c′= 85.01

ys fAT 11 =

ss fAC ′′=2

ys fAT 22 =

sε′

d ′

ddZ ′−=2

N.A
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Doubly Reinforced Sections
Condition II: Compression Steel Below 
Yield Stress

• Substituting Eqs 51 and 52 into Eq. 50, yields

• Multiplying by c, expanding, and rearranging, yield

• If Es is taken as 29 × 103 ksi, Eq. 54 will take the 
following form:

( ) ( )
sscys AE

c
dccbffA ′



 ′−

+′=
003.0β85.0 1

( ) ( ) 0003.0003.0β85.0 2
1 =′′−−′+′ ssysssc AEdcfAAEcbf

(53)

(54)



18

CHAPTER 5d. FLEXURE IN BEAMS Slide No. 34
ENCE 454 ©Assakkaf

Doubly Reinforced Sections
Condition II: Compression Steel Below 
Yield Stress

The following quadratic equation can be 
used to find c when              :      ys εε <′

( ) ( ) 087 87 85.0 2
1 =′′−−′+′ syssc AdcfAAcbf β

Analogous to:

a
acbbx

cbxax

2
4

0
2

2

−±−
=

=++

a                       b                 c

(55)

Note:
The basic units are kips and inches
in the equation. 
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Doubly Reinforced Sections
Condition II: Compression Steel Below 
Yield Stress
– In this case when              , the nominal 

moment capacity of Eq. 40 becomes 

( ) ( )

52 Eq.by given  as   and  
85.0

    

where
2

       

21

s
c

ssys

ssssys

nnn

f
bf

fAfA
a

ddfAadfAfA

MMM

′
′

′′−
=

′−′′+



 −′′−=

+=

ys εε <′

(56)
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Doubly Reinforced Sections

ACI Code Ductility Requirements
– The ACI Code limitation on ρ applies to 

doubly reinforced beams as well as to 
singly reinforced beams.

– Steel ratio ρ shall not be less than given by

(57)
yy

c

ff
f 2003

min ≥
′

=ρ

CHAPTER 5d. FLEXURE IN BEAMS Slide No. 37
ENCE 454 ©Assakkaf

Doubly Reinforced Sections

ACI Code Ductility Requirements
– In order to ensure tension-controlled

behavior, the ratio c/dt should less than 
0.375, that is

– In this case, the strain εt in the tensile 
reinforcement is greater than 0.005, which 
can be computed by

(58)0.30)y (preferabl  375.0≤
td

c







 −= 1003.0

c
d

tε (59)
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Doubly Reinforced Sections

ACI-318-02 Code Strain Limits

Figure 14. Strain Limit Zones and variation of Strength Reduction Factor φ
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Figure 25. Flow Chart
For the Analysis of 
Doubly Reinforced
Rectangular Beams
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Trial-and-Adjustment Procedure for the 
Design of Doubly Reinforced Sections
1. Midspan section. The trial-and-

adjustment procedure described for 
singly reinforced beam can be used if the 
section is rectangular.

2. Support section. The width b and the 
effective depth d are already known from 
part 1 together with the value of the 
external negative factored moment Mn.
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a) Find the strength Mn1 singly reinforced 
section using the already established b and 
d dimensions of the section at midspan and 
a reinforcement area to give εt > 0.005.

b) From step (a), find Mn2 = Mn – Mn1 and 
determine the resulting As2 = . The total 
steel area at the tension side would be

c) Alternatively, determine how many bars are 
extended from the midspan to the support

Trial-and-Adjustment Procedure for the 
Design of Doubly Reinforced Sections

sA′

sss AAA ′+= 1
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to give the     to be used in calculating Mn2.
d) From step (c), find the value of Mn1 = Mn –

Mn2. Calculate As1 for singly reinforced beam 
as the first part of the solution.  Then 
determine total                     . Verify that As1
does not give εt < 0.005 if it is revised in the 
solution.

e) Check for the compatibility of strain in both 
alternatives to verify whether the 
compression steel yielded or not and use 

Trial-and-Adjustment Procedure for the 
Design of Doubly Reinforced Sections

sA′

sss AAA ′+= 1
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the corresponding stress in the steel for 
calculating the forces and moments.

f) Check for satisfactory minimum 
reinforcement requirements.

g) Select the appropriate bar sizes.

Trial-and-Adjustment Procedure for the 
Design of Doubly Reinforced Sections
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Doubly Reinforced Beam Analysis
Example 11: Compression steel yielded

Example 1
Compute the 
practical moment 
capacity φMn for 
the beam having 
a cross section 
as shown in the 
figure.  Use     = 
3,000 psi and fy = 
60,000 psi.

cf ′

″

2
12

02 ′′

11 ′′

10#2−

stirrup 3#

(typ)clear  
2
11
″

9#3−
9#3−
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Doubly Reinforced Beam Analysis
Example 11 (cont’d)
Determine the values for     and As:

Compute the steel ratio ρ:

sA′

From Table 6, 
2in 54.2#10 2 of area ==′sA

2in 0.6#9 6 of area ==sA

( )

( ) 0273.0
2011
6ρ

0115.0
2011
54.2ρ

===

==
′

=′

bd
A
bd
A

s

s
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Doubly Reinforced Beam Analysis

#3 #4 $5 #6 #7 #8 #9 #10 #11
1 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56
2 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12
3 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68
4 0.44 0.80 1.24 1.76 2.40 3.16 4.00 5.08 6.24
5 0.55 1.00 1.55 2.20 3.00 3.95 5.00 6.35 7.80
6 0.66 1.20 1.86 2.64 3.60 4.74 6.00 7.62 9.36
7 0.77 1.40 2.17 3.08 4.20 5.53 7.00 8.89 10.92
8 0.88 1.60 2.48 3.52 4.80 6.32 8.00 10.16 12.48
9 0.99 1.80 2.79 3.96 5.40 7.11 9.00 11.43 14.04
10 1.10 2.00 3.10 4.40 6.00 7.90 10.00 12.70 15.60

Number
 of bars

Bar number
Table 6.  Areas of Multiple of Reinforcing Bars (in2)

Example 11 (cont’d)
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Doubly Reinforced Beam Analysis
Example 11 (cont’d)

Check whether compression steel yielded using Eq. 47

( ) 0158.00115.00273.0ρρ
in 46.354.20.6

in 54.2
Therefore,

2
21

2
2

=−=′−
=−=−=

=′=

sss
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AAA

AA

( )

( ) ( )( )( )
( ) 0146.0

000,60000,87
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20000,60
5.230000.850.85ρ-ρ

000,87
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
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
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


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Doubly Reinforced Beam Analysis
Example 11 (cont’d)

The compression steel has yielded, and Eq. 40 for 
determining Mn can be used:

( )[ ] 0146.00158.0ρρ             
Therefore,

>=′− ductility is OK 

( ) ( )

( ) ( )( ) k-in 9.050,65.2206054.2
2
4.7206046.3       

2
       

21

=−+



 −=

′−′+



 −′−=

+=

ddfAadfAA

MMM

ysyss

nnn

( ) ( )
( )( ) in. 40.7

11385.0
6046.3

85.085.0
1 ==

′
=

′
′−

=
bf

fA
bf
fAA

a
c

ys

c

yss (Eq. 41) 
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Doubly Reinforced Beam Analysis
Example 11 (cont’d)

The practical moment capacity is evaluated 
as follows:

kips-ft 504.2kips-ft 
12

9.050,6
==nM

( ) kips-ft 4542.5049.0 ==uMφ
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Doubly Reinforced Beam Analysis
Example 12: Compression steel not yielded

Calculate the nominal moment strength Mn of 
the doubly reinforced section shown in the 
figure.  Given:

bars 7 No. 2 
bars 10 No. 4 

in. 21
in. 5.2

psi 000,60
concrete)weight -(normal psi 5000

=′
=
=
=′

=
=′

s

s

t

y

c

A
A
d
d

f
f

21 in.

14 in.

24 in.

in. 5.2

#7 2 :sA′

in. 5.18

#10 4 :sA
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Doubly Reinforced Beam Analysis

Example 12 (cont’d)
Determine the values for     and As:sA′
From Table 6, 

( ) 0173.0
2114
08.5   ,in 08.5#10 4 of area 2 =====

bd
AA s

s ρ

( ) 0041.0
2114
20.1    ,in 20.1#7 2 of area 2 ==

′
=′==′

bd
AA s

s ρ

( ) 0132.00041.00173.0      
in 88.320.108.5      

Therefore,
2

1

=−=′−
=−==′−

ρρ
sss AAA
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Doubly Reinforced Beam Analysis

#3 #4 $5 #6 #7 #8 #9 #10 #11
1 0.11 0.20 0.31 0.44 0.60 0.79 1.00 1.27 1.56
2 0.22 0.40 0.62 0.88 1.20 1.58 2.00 2.54 3.12
3 0.33 0.60 0.93 1.32 1.80 2.37 3.00 3.81 4.68
4 0.44 0.80 1.24 1.76 2.40 3.16 4.00 5.08 6.24
5 0.55 1.00 1.55 2.20 3.00 3.95 5.00 6.35 7.80
6 0.66 1.20 1.86 2.64 3.60 4.74 6.00 7.62 9.36
7 0.77 1.40 2.17 3.08 4.20 5.53 7.00 8.89 10.92
8 0.88 1.60 2.48 3.52 4.80 6.32 8.00 10.16 12.48
9 0.99 1.80 2.79 3.96 5.40 7.11 9.00 11.43 14.04
10 1.10 2.00 3.10 4.40 6.00 7.90 10.00 12.70 15.60

Number
 of bars

Bar number
Table 6.  Areas of Multiple of Reinforcing Bars (in2)

Example 12 (cont’d)
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Doubly Reinforced Beam Analysis
Example 12 (cont’d)

Check whether compression steel yielded using Eq. 47

( )

( ) ( )( )( )
( ) 0217.0

000,60000,87
000,87

21000,60
5.250000.800.85ρ-ρ

000,87
000,870.85βρ-ρ 1
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

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−
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≥′
yy

c

fdf
df

( )[ ] 0217.00132.0ρρ             
Therefore,

<=′−

and the compression steel did not yield and      is less
than fy.  Therefore use Eqs 55 and 56 to find Mn. 

sf ′
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Doubly Reinforced Beam Analysis

Example 12 (cont’d)
Using Eq. 55 to find c and consequently a:

( ) ( ) 087 87 85.0 2
1 =′′−−′+′ syssc AdcfAAcbf β

( ) 6.4780.014585.085.0 1 =×××=′ βbfc

( ) 4.2006008.52.18787 −=×−×=−′ yss fAA

2612.15.28787 =××=′′ sAd

Therefore, 

02614.2006.47 2 =−− cc Find c from
quadratic Eq. 
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Doubly Reinforced Beam Analysis
Example 12 (cont’d)
The solution to the quadratic equation is as follows:

a
acbbx

cbxax

2
4

0
2

2

−±−
=

=++

( )( )
( )

( ) in. 2.480.025.5  in    25.5  takeTherefore,      

5.251  ,0409.1
2.95

49.2994.200
6.472

2616.474)200()4.200(

02614.2006.47
2

2
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±
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−−−±−−
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Doubly Reinforced Beam Analysis
Example 12 (cont’d)

Check ACI Code Requirements for minimum 
steel and strain limits:

( )[ ] OK     0035.0200,
3

max0132.0 Actual











=









 ′
>=′−

yy

c

ff
f

ρρ

or

OK    0.30)y (preferabl  375.025.0
21
25.5

<







==

td
c

OK    005.0009.01
25.5

21003.01003.0 >=













 −=






 −=

c
d

tε

Using either Eq. 58 or 59, gives 
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Doubly Reinforced Beam Analysis
Table 7.  Design Constants

  Recommended Design Values 

cf ′  











≥

′

yy

c

ff
f 2003

 ρb ρ R (ksi) 

fy = 40,000 psi 
3000 0.0050 0.03712 0.0135 482.82 
4000 0.0050 0.04949 0.0180 643.76 
5000 0.0053 0.05823 0.0225 804.71 
6000 0.0058 0.06551 0.0270 965.65 

fy = 50,000 psi 
3000 0.0040 0.02753 0.0108 482.80 
4000 0.0040 0.03671 0.0144 643.80 
5000 0.0042 0.04318 0.0180 804.70 
6000 0.0046 0.04858 0.0216 965.70 

fy = 60,000 psi 
3000 0.0033 0.0214 0.0090 482.82 
4000 0.0033 0.0285 0.0120 643.76 
5000 0.0035 0.0335 0.0150 804.71 
6000 0.0039 0.0377 0.0180 965.65 

fy = 75,000 psi 
3000 0.0027 0.0155 0.0072 482.80 
4000 0.0027 0.0207 0.0096 643.80 
5000 0.0028 0.0243 0.0120 804.70 
6000 0.0031 0.0274 0.0144 965.70 
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Doubly Reinforced Beam Analysis

ACI-318-02 Code Strain Limits

Figure 14. Strain Limit Zones and variation of Strength Reduction Factor φ

CHAPTER 5d. FLEXURE IN BEAMS Slide No. 59
ENCE 454 ©Assakkaf

Doubly Reinforced Beam Analysis
Example 12 (cont’d)

Since εt > 0.005, the strength reduction factor 
φ = 0.9.  Therefore, the nominal moment 
strength Mn of the beam is computed using 
Eqs. 52 and 56 as follows:

( ) ( )

( ) ( )

kips-ft 478  kips-in 8.738,5      

5.22157.452.1
2
2.42157.452.16008.5      

2

==

−×+



 −×−×=

′−′′+



 −′′−= ddfAadfAfAM ssssysn

( ) ( ) ksi 57.451029
25.5

5.225.5003.0003.0 3 =××



 −

=



 ′−

=′ sE
c

dcf
s

ANS. 


