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Doubly Remforced Sections

m Introduction
— |f a beam cross section is limited because of

architectural or other considerations, it may
happen that concrete cannot develop the
compression force required to resist the given
bending moment.

— In this case, reinforcing steel bars are added

in the compression zone, resulting in a so-
called doubly reinforced beam, that is one

with compression as well as tension

reinforcement (Figure 21)
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Figure 22. Doubly Reinforced Beam Sections
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m Introduction (cont'd)

— The use of compression reinforcement has
decreased markedly with the use of strength
= design methods, which account for the full
strength potential of the concrete on the
compressive side of the neutral axis.

— However, there are situations in which
compressive reinforcement is used for
reasons other than strength.
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m Introduction (cont'd)

— It has been found that the inclusion of some
compression steel has the following

= advantages:

* It will reduce the long-term deflections of members.

* It will set a minimum limit on bending loading

* It act as stirrup-support bars continuous through
out the beam span
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m Introduction (cont d)

— Another reason for placing reinforcement in
the compression zone is that when beams
span more than two supports (continuous

i construction), both positive and negative

moments will exist as shown in Figure 23.

— In Figure 23, positive moments exist at A and
C; therefore, the main tensile reinforcement
would be placed in the bottom of the beam.

— At B, however, a negative moment exists and
the bottom of the beam is in compression.
The tensile reinforcement, therefore, must be
placed near the top of the beam.
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m Introduction (cont'd)
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Figure 23. Continuous Beam
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m Condition |I: Tension and Compression
Steel Both at Yield Stress

— The basic assumption for the analysis of
i doubly reinforced beams are similar to
those for tensile reinforced beams.

— The steel will behave elastically up to the
point where the strain exceeds the yield

strain ¢,. As a limit /= f when the
compressmn straine! >

—Ifel< the compressmn steel stress will
be f = 8 E..

Slide No. 6
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m Condition I: Tension and Compression
Steel Both at Yield Stress (cont’d)

— If, in a doubly reinforced beam, the tensile
= steel ratio pis equal to or less than p,, the
strength of the beam may be approximated
within acceptable limits by disregarding the
compression bars.

— The strength of such a beam will be
controlled be tensile yielding, and the lever
arm of the resisting moment will be little
affected by the presence of comp. bars.
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m Condition |I: Tension and Compression
Steel Both at Yield Stress (cont’d)

— If the tensile steel ratio pis larger than p,, a
i somewhat elaborate analysis is required.

—In Fig. 24a, a rectangular beam cross
section is shown with compression steel 4;

placed at distance d' from the compression
face and with tensile steel 4, at the
effective depth 4.
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‘Doubly Reinforced Sections

m Condition |: Tension and Compression
Steel Both at Yield Stress (cont’d)
d’ _ 085/ Figure 24
b —J g, = 0.003:‘ o - g
= C,=Af
L PY P ® 2 sJ s
4,
LLNALLYL
o o o0
Cross Section Strain at Ultimate  Concrete-Steel Steel-Steel
Moment Couple Couple
=] (2) (b) (© (d)
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m Condition |: Tension and Compression
Steel Both at Yield Stress (cont’d)
— Notation for Doubly Reinforced Beam:

: A; = total compression steel cross-sectional area
&) 4 = effective depth of tension steel

d' = depth to centroid of compressive steel from compression fiber

A4,,; = amount of tension steel used by the concrete-steel couple

A, =amount of tension steel used by the steel-steel couple

A, = total tension steel cross-sectional area (4, = A4, + 4,,)

M, = nominal moment strength of the concrete-steel couple

M, , = nominal moment strength of the steel-steel couple

M, =nominal moment strength of the beam

g, = unit strain at the centroid of the tension steel
e g = unit strain at the centroid of the compressive steel
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m Condition I: Tension and Compression
Steel Both at Yield Stress (cont'd)

— Method of Analysis:

» The total compression will now consist of two
forces:

C,, the compression resisted by the concrete
C,, the compression resisted by the steel

* For analysis, the total resisting moment of the
beam will be assumed to consist of two parts or two
internal couples: The part due to the resistance of
the compressive concrete and tensile steel and the

part due to the compressive steel and additional
tensile steel.

:-.9
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“Doubly Reinforced Sections

m Condition I: Tension and Compression

Steel Both at Yield Stress (cont’d)

— The total nominal capacity may be derived
as the sum of the two internal couples,
neglecting the concrete that is displaced by
the compression steel.

— The strength of the steel-steel couple is
given by (see Figure 24)

M, =TZ, (36)
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m Condition I: Ten3|on and Compression
Steel Both at Yield Stress (cont’d)
d- _ 085/, Figure 24
_ b —J 86.*0.003‘1_4 | - g
B e o0 . QAL
A C,=0.85flab
o NA Y Y T ]
d Z,=d—d
o090 T, =41, ——
‘e Ss %‘ T2 = ASZf:v
Cross Section Strain at Ultimate  Concrete-Steel Steel-Steel
Moment Couple Couple
=] (2) (b) (© (d)
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Doubly Remforced Sections

m Condition I: Tension and Compression
Steel Both at Yield Stress (cont’d)

Mn2 = As2fy (d - d’) assuming jrs = fy

_l C2:T2:>A:'f;‘,:As2fy:>A;:As2
Therefore,
M,=A4f(d-d (37)
— The strength of the concrete-steel couple is
given by
M =TZ (38)
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m Condition I: Tension and Compression
Steel Both at Yield Stress (cont’d)

M, = Aslfy(d—%] assuming f, :fy

As = Asl +As2 - Asl = As _AS2
since 4, = 4!, then
Asl = AS - As'

Therefore

Ma=(4-a)ra-4] (9
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Doubly Remforced Sections

m Condition |I: Tension and Compression
Steel Both at Yield Stress (cont’d)
— Nominal Moment Capacity

E From Egs. 37 and 39, the nominal moment
capacity can be evaluated as

anMnl+Mn2 (40)
= (4, —A;)fy[d—g}fl;fy(d—d’)

This equation is valid only if 4. yields
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m Condition I: Tension and Compression
Steel Both at Yield Stress (cont’d)

I —Eq. 40 is valid only if 4] yields. Otherwise, the
X beam has to be treated as a singly reinforced
beam neglecting the compression steel, or
one has to find the actual stress £, in the
compression reinforcement 4, and use the
actual force in the moment equilibrium
equation.
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m Condition |I: Tension and Compression
Steel Both at Yield Stress (cont’d)

] — Determination of the Location of Neutral
X Axis:

!
S

c=_— = and p'=—
B, S S

I'=C +C,
Af, =085/ )ab+ A f,
Therefore,

_A-A)f, _p-p)fd _ A4,
085/ 085  085fb
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m Condition |: Tension and Compression
Steel Both at Yield Stress (cont’d)
— Location of Neutral Axis ¢

y _4-4)f, _p-p)fd a1)
085/b 085/
a_(4-4)f, (-p)fd

“=B T 0s8psb  085p s 4P

NOTE: if fc' <4,000 psi, then B, = 0.85, otherwise see next slide
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ENCE 454 ©Assakkaf

‘”ﬁ > CHAPTER 5d. FLEXURE IN BEAMS
-

Doubly Reinforced Sections

m Condition |I: Tension and Compression
Steel Both at Yield Stress (cont’d)
— The value of 3, may determined by

0.85 for £ <4,000 psi
B, ={105—5x10° /7  for 4,000psi< f'<8,000psi (43)
0.65 for f!> 8,000 psi
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m Strain-Compatibility Check

— For 4! to yield, the strain ¢! in the
compression steel should be greater than or

= equal to the yield strain of reinforcing steel,
which is r
f=t (44)

— The strain €, can be calculated from similar
triangles. Referring to Figure 24,

g = 0.003(‘: —d j = 0.002{1 —ij (45)

c c
=]
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Doubly Remforced Sections

m Strain-Compatibility Check (cont’d)

— Substituting ¢ of Eq. 42 into Eq. 45, gives
I , d’ 0.854.f.d'
L gl = 0.003(1 ——j =0.003| 1 - e
¢ { (p—p’)dfy} (46)

— For compression steel to yield, the following
condition must be satisfied:
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n Straln-Compatlblllty Check (cont’d)
— The compression steel yields if
g > /s
g * T 29x%10°
X
or
0.003 1. 0-83B.L" | /y
(p—p')fyd 29x10°
or
1_0-8551fc'd'2 /,
(p-p')f,d 87,000
e
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Doubly Remforced Sections
m Straln-Compatlblllty Check (cont’'d)
0.85p,fd' _ f,
1- >
I (p-p')f,d 87,000
. or
0.85B,f/d" /.
 (p- p)fd 87,000
or
_0.85,d" _ f,—87,000
(p-p')f,d 87,000
le

—
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n Straln-Compatlblllty Check (cont’d)

or

_0.85B,f/d" _ f, ~87,000
= (p-p')f,d 87,000
or

0.85B,.f/d" _ f, —87,000
(p-p')f,d ~ 87,000

or

0.858, f'd'( 87,000
(b-p)> f.d (87,000—ny

‘"ﬁ - CHAPTER 5d. FLEXURE IN BEAMS Slide No. 27
r‘?

Doubly Reinforced Sections

—
ENCE 454 ©Assakkaf

m Strain-Compatibility Check (cont’'d)
If compression steel is to yield, then the
X following condition must be satisfied:

(p_p,)ZO.SSBIde[ 87,000 ) w

f,d (87,000 f,
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m Strain-Compatibility Check (cont’'d)
- Ifs’s is less than g, the stress in the
I compression steel,fs’ , can be computed as
X
fl=Eg =29x10°!
o (48)
f =29%x10°%0.003 l—w
(p—p)f,d
e
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m Condition II: Compression Steel Below
Yield Stress

— The preceding equations are valid only if
i the compression steel has yielded when
the beam reaches its ultimate strength.

— In many cases, however, such as for wide,
shallow beams reinforced with higher-
strength steels, the yielding of compression
steel may not occur when the beam
reaches its ultimate capacity.
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m Condition Il: Compression Steel Below
Yield Stress

— It is therefore necessary to to develop

B more generally applicable equations to
account for the possibility that the
compression reinforcement has not yielded

when the doubly reinforced beam fails in
flexure.

— The development of these equations will
be based on

!/
el <g, (49)
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Doubly Remforced Sections

m Condition II: Compression Steel Below
Yield Stress

— Development of the Equations for
Condition |l

» Referring to Fig. 24,
I'=C+C,
A f, =(0.85f)ba+ f!A!
a=Pc (51)
cand g {0.003(6 - d')}ES (52)
: c

(50)

* But
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m Condition Il: Compression Steel Below
Yield Stress
= . _ Figure 24
b —J £, = 0.003:‘ ‘
_._... C — Al !
l . . ; . :2 sf:s‘
A C,=0.85/ab
o NA Y Y T ] i
Z,=d-d
o090 l > T =41, —
T,= Aszf_ y
Cross Section Strain at Ultimate Concrete-Steel Steel-Steel
Moment Couple Couple
=] (2) (b) () (d)
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Doubly Reinforced Sections

Yield Stress
» Substituting Eqs 51 and 52 into Eq. 50, yields

A1, =(0.85 f;)bﬁlc{w}mg (53)
c
* Multiplying by ¢, expanding, and rearranging, yield

85/, )c> +(0.003E,4 — 4, f, )e—0.003d'E, 4 =0 (54)

* If E, is taken as 29 x 103 ksi, Eq. 54 will take the
following form:
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m Condition Il: Compression Steel Below
Yield Stress

The following quadratic equation can be
5 used to find ¢ when &} < &, :

(0.85/8,)c* + (874 — 4, f,)c~87d'4 =0 (55)
[ J [ J

a b c
Analogous to:

2 bxte=0 Note:
ax XTC= The basic units are kips and inches

~ _b+ /bz =7 in the equation.

2a
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m Condition Il: Compression Steel Below
Yield Stress
— In this case when 5; < ¢, , the nominal
P moment capacity of Eq. 40 becomes
M,=M,+M,

:(Asfy—As'fs'{d—%}+,4;fs'(d_d') (56)
where

a= M and f]as given by Eq.52
0.857'h
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m ACI Code Ductility Requirements

— The ACI Code limitation on p applies to
doubly reinforced beams as well as to
singly reinforced beams.

— Steel ratio p shall not be less than given by

_3Jf L 200

min

7 (57)

y
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m ACI Code Ductility Requirements

— In order to ensure tension-controlled

behavior, the ratio ¢/d, should less than
0.375, that is

di <0.375 (preferably 0.30)  (58)

— In this case, the strain ¢, in the tensile
reinforcement is greater than 0.005, which
can be computed by

d

£ = 0.003(; — 1) (59)
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Doule Reinforced Sections
m ACI-318-02 Code Straln Limits

o

0.57 + 67 -
0.90 - _ = BE t '.\ -
e
-
B>
-
-
[== -
-
- *
SPIRAL - %,
K 0.70 [ o o ot o e ™ — $=0.48 + 83 =
@ >
0.65
OTHER
Compression o wTensi_L}_n
Conalled. | uon ~Controlled
=0.002 £, =0.005
c c
= =0.600 — =0.375
dy d

Interpolation on c/dy: Spiral ¢ = 0.37 + 0.20/(cdf;)
Other ¢ = 0.23 + 0.25/{c.d;)

Figure 14. Strain Limit Zones and variation of Strength Reduction Factor ¢

=]
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= Figure 25. Flow Chart

For the Analysis of

Doubly Reinforced

Rectangular Beams
L) [J;;:::r;z:;;

__Li.n.&:"u B0
fd 87,000 - r’ ik :

M, = 2llAf, - Al Hd - 5-3 + Al = ')

i

Af, - Al
pmiLik
085D o verity £ from compatability and adjust a }
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-1 Trial-and-Adjustment Procedure for the
Design of Doubly Reinforced Sections

1. Midspan section. The trial-and-
adjustment procedure described for
singly reinforced beam can be used if the
section is rectangular.

2. Support section. The width 5 and the
effective depth d are already known from
part 1 together with the value of the
external negative factored moment M,

3 CHAPTER 5d. FLEXURE IN BEAMS Slide No. 41
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i Trial-and-Adjustment Procedure for the

Design of Doublil— Reinforced Sections

a) Find the strength A, singly reinforced
section using the already established » and

] d dimensions of the section at midspan and

& a reinforcement area to give ¢, > 0.005.

b) From step (a), find M, =M, — M, , and
determine the resulting 4,, = A . The total
steel area at the tension side would be

A =A,+A4]

c) Alternatively, determine how many bars are

extended from the midspan to the support
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Trial-and-Adjustment Procedure for the
Design of Doubly Reinforced Sections

to give the 4] to be used in calculating M,,,.

d) From step (c), find the value of M,, = M, —
M,, Calculate 4, for singly reinforced beam
as the first part of the solution. Then
determine total 4, = 4, + A/ . Verify that 4,
does not give g, < 0.005 if it is revised in the
solution.

e) Check for the compatibility of strain in both
alternatives to verify whether the
compression steel yielded or not and use

3 CHAPTER 5d. FLEXURE IN BEAMS Slide No. 43

i~ Trial-and-Adjustment Procedure for the

Design of Doubly Reinforced Sections
the corresponding stress in the steel for
calculating the forces and moments.

f) Check for satisfactory minimum
reinforcement requirements.

g) Select the appropriate bar sizes.
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% Doubly Reinforced Beam Analysis

m Example 11: Compression steel yielded

] Compute the ) .
s practical moment 1 25
capacity gM, for 2-#10
the beam having
a cross section "
as shown in thp 1l clear (typ) ]
figure. Use
3,000 psi andfy = 3—#9
60,000 psi.

20”
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Doubly Reinforced Beam Analysis

m Example 11 (contd)
Determine the values for 4 and 4,:
From Table 6,
Al =areaof 2#10=2.54in"
A =areaof 6#9=6.0in"

ﬁ > CHAPTER 5d. FLEXURE IN BEAMS
-

Compute the steel ratio p:

p’=AS _ 234 60115
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Doubly Reinforced Beam Analysis
m Example 11 (cont’d)
Table 6. Areas of Multiple of Reinforcing Bars (in?)
Number Bar number
B ofbars | #3 #4 $5 #6 #7 #8 #9 #10 [ #11
i 1 011 | 020 | 031 | 044 | 060 | 079 | 100 | 127 [ 156
2 022 | 040 | 062 | 088 | 120 | 158 | 200 [(25D] 3.12
3 033 | 060 | 093 | 132 | 180 | 237 | 300 | 381 | 468
4 044 | 080 | 124 | 176 | 240 | 316 | 400 | 508 | 624
5 055 | 100 | 155 | 220 | 300 | 395 | 500 | 635 | 7.80
6 0.66 120 | 186 [ 264 | 360 | 474 [ (600 ) 762 | 936
7 077 | 140 | 217 | 308 | 420 | 553 | 700 | 889 | 10.92
8 088 | 1.60 | 248 | 352 | 480 | 632 | 800 | 1016 | 1248
9 099 | 180 | 279 | 396 | 540 | 711 | 900 | 1143 | 1404
10 110 | 200 | 310 | 440 | 600 | 790 | 1000 | 1270 | 15.60
e
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Doubly Reinforced Beam Analysis
m Example 11 (cont d)
Therefore,
i c 2
A,=A4 =2.541n
i A, =4 -A4,=60-254=3.46 in’
5

(p—p')= 0.0273-0.0115=0.0158

Check whether compression steel yielded using Eq. 47
N 0.858,7d"[ 87,000
(p-p))2 L3P,
f.d 87,000 f,

(o- ,)>0.85(0.85)(3000)(2.5) 87,000
PP = 60,00020) | 87,000 60,000

j:0.0146
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& Doubly Reinforced Beam Analysis
m Example 11 (cont d)
Therefore,
[(p—p’)=0.0158]>0.0146 ductility is OK
g The compression steel has yielded, and Eq. 40 for
N determining M, can be used:
_W-A)f, Al 346(60) oo g an)
0.85/bh  0.85fbh 0.8503)11)
Mn :Mnl +MnZ
=(4, —As’)f{d—%}+As’fy(d—d’)
= 3.46(60)[20 —%} +2.54(60)20-2.5)=6,050.9in - k
e
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Doubly Reinforced Beam Analys1s
m Example 11 (cont d)
M, = 6’01520'9 ft - kips = 504.2 ft - kips
=

The practical moment capacity is evaluated
as follows:

¢M , =0.9(504.2) = 454 ft - kips
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3 Doubly Reinforced Beam Analysis

m Example 12: Compressmn steel not yielded

Calculate the nominal moment strength M, of
the doubly reinforced section shown in the
figure. Given:

/. =5000 psi (normal - weight concrete)
S, =60,000 psi 25in.
d'=2.51n.

. 1% 2#7°
d,=2l1n. '
AS =4 No.10bars 24 in. 18.5in. 21 in.
Al =2 No.7 bars

«~— 14 in. —

A :4#10
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Doubly Reinforced Beam Analysis

m Example 12 (cont’d)
Determine the values for 4] and 4,:
From Table 6,

A =areaof 4#10=5.08in", p= Ifc} :—)—O 0173

A =areaof 2#7=1.20in°, p'=

~bd 14(21)
Therefore,
A -4 =4,=508-1.20=3.88in’
(p—p')=0.0173-0.0041=0.0132
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m Example 12 (cont’d)
Table 6. Areas of Multiple of Reinforcing Bars (in?)
Number Bar number
5 of bars #3 #4 $5 #6 #7 #8 #9 #10 #11
X 1 0.11 0.20 0.31 0.44 060 | 0.79 1.00 1.27 1.56
2 0.22 0.40 0.62 0.88 [C120)] 1.8 2.00 2.54 3.12
3 0.33 0.60 0.93 1.32 1.80 2.37 3.00 | 381 4.68
4 0.44 0.80 1.24 1.76 2.40 3.16 4.00 Q_Oﬁ) 6.24
5 0.55 1.00 1.55 2.20 3.00 3.95 5.00 6.35 7.80
6 0.66 1.20 1.86 2.64 3.60 4.74 6.00 7.62 9.36
7 0.77 1.40 2.17 3.08 4.20 5.53 7.00 8.89 10.92
8 0.88 1.60 2.48 3.52 4.80 6.32 8.00 10.16 12.48
9 0.99 1.80 2.79 3.96 5.40 7.11 9.00 11.43 14.04
10 1.10 2.00 3.10 4.40 6.00 7.90 10.00 12.70 15.60
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Doubly Reinforced Beam Analysis
m Example 12 (cont d)
Check whether compression steel yielded using Eq. 47
ryr
(p-p')z 0.85B,f1.d 87,000
= f,d 87,000,

(0-p)> 0.85(0.80)(5000)(2.5)( 87,000 j: 0.0217
60,000(21) 87,000 — 60,000
Therefore,

[(p-p)=0.0132]<0.0217

and the compression steel did not yield and f, is less
than /. Therefore use Eqs 55 and 56 to find M,.
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Doubly Reinforced Beam Analysis

m Example 12 (cont'd)
Using Eq. 55 to find ¢ and consequently a:

(0.85/bp,)c* + (874 — A f,)c—87d'A. =0

(0.85 £'b3,)=0.85x5x14x0.80 =47.6 |
(874~ 4,1,)=87x1.2-5.08x60 = ~200.4 |
87d'A! =87x2.5x1.2=261 |

Therefore,

5 _ Find ¢ from
47.6¢° —200.4c-261=0| < quadratic Eq.
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Doubly Reinforced Beam Analysis

m Example 12 (contd)

The solution to the quadratic equation is as follows:
ax> +bx+c=0

_ —b++/b* —4ac

2a

47.6x* —200.4x—261=0

| —(~200.4)%/(-200)> —4(47.6)(-261) _ 200.4+299.49
- 2(47.6) 952

x =-1.0409,

Therefore, take c = 5.25in = a =5.25(0.80)= 4.2 n.
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Doubly Reinforced Beam Analysis
m Example 12 (contd)
Check ACI Code Requirements for minimum
steel and strain limits:
34/
&l [Actual(p-p')=0.0132]> max[ fe ZOOJ 0.0035| OK
y y
Using either Eq. 58 or 59, gives
2
€ 2325 _25(<0.375 (preferably 0.30) OK
d 21
or
d 21
g, =0.003] —=1{=0.003f ——-1{=0.009>0.005 OK
c 5.25
=]
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Doubly Reinforced Beam Analysis
m Table 7. Design Constants
R ded Design Values
S {g 2 27(3()} Ps p R (ksi)
£, = 40,000 psi
| 3000 0.0050 0.03712 0.0135 482.82
5 5000 00033 005823 00225 S0471
6000 0.0058 0.06551 0.0270 965.65
f,=50,000 psi
3000 0.0040 0.02753 0.0108 482.80
4000 0.0040 0.03671 0.0144 643.80
5000 0.0042 0.04318 0.0180 804.70
6000 0.0046 0.04858 0.0216 965.70
f, = 60,000 psi
3000 0.0033 0.0214 0.0090 482.82
4000 0.0033 0.0285 0.0120 643.76
5000 Q.003> 0.0335 0.0150 804.71
6000 0.0039 0.0377 0.0180 965.65
f, = 175,000 psi
3000 0.0027 0.0155 0.0072 482.80
4000 0.0027 0.0207 0.0096 643.80
5000 0.0028 0.0243 0.0120 804.70
6000 0.0031 0.0274 0.0144 965.70
|E=A
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| Doubly Reinforced Beam Analysis
m ACI-318-02 Code Strain Limits
0.90 _ ¢=057+ 67g; --—-.;__
= oroon SR ___ _
0'85_ OTHER
oo Transiton——»rn e
& l 0.002 £ =0.005
?:T 0.600 -;} -0.375
Interpolation on c/dy: Spiral ¢ = 0.37 + 0.20/(cdf;)
Other ¢ = 0.23 + 0.25/(cdy)
Figure 14. Strain Limit Zones and variation of Strength Reduction Factor ¢
F=
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Doubly Reinforced Beam Analysis
m Example 12 (contd)
Since ¢, > 0.005, the strength reduction factor
¢ = 0.9. Therefore, the nominal moment
| strength M, of the beam is computed using
X

Eqgs. 52 and 56 as follows:

e {0.003(0—61’)} E - {0.003(5.25—2.5)
¢ 5.25

}(29><103 =45.57 ksi

=47, Af{d——}+Af(d d')

:(5.08x60—1.2x45.57)[21—%}+1 2x45.57(21-2.5)

=5,738.81n - kips =478 ft - kips ANS.




