

EXAMPTER 5d. FLEXURE IN BEAMS Doubly Reinforced Sections EXECLASE CASERATE Condition I: Tension and Compression Steel Both at Yield Stress (cont'd) $M_{n2} = A_{s2}f_y(d-d')$ assuming $f_s = f_y$ $C_2 = T_2 \Rightarrow A'_s f'_s = A_{s2}f_y \Rightarrow A'_s = A_{s2}$ Therefore, $M_{n2} = A'_s f_y(d-d')$ (37) - The strength of the concrete-steel couple is given by $M_{n1} = T_1 Z_1$ (38)

and a state	CHAPTER 5d. FLEXURE IN BEAMS Slide No. 46											
. A. 934	Doubly Reinforced Beam Analysis									454 ©Assakkaf 1S		
	 Example 11 (cont'd) Table 6 Areas of Multiple of Reinforcing Bars (in²) 											
		Number	0. 1110	us 01 10	runpi	B	ar numb	er	5 (iii)			
		ofbars	#3	#4	\$5	#6	#7	#8	#9	#10	#11	
		1	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56	
		2	0.22	0.40	0.62	0.88	1.20	1.58	2.00	2.54	3.12	
		3	0.33	0.60	0.93	1.32	1.80	2.37	3.00	3.81	4.68	
		4	0.44	0.80	1.24	1.76	2.40	3.16	4.00	5.08	6.24	
		5	0.55	1.00	1.55	2.20	3.00	3.95	5.00	6.35	7.80	
		6	0.66	1.20	1.86	2.64	3.60	4.74	6.00	7.62	9.36	
		7	0.77	1.40	2.17	3.08	4.20	5.53	7.00	8.89	10.92	
		8	0.88	1.60	2.48	3.52	4.80	6.32	8.00	10.16	12.48	
		9	0.99	1.80	2.79	3.96	5.40	7.11	9.00	11.43	14.04	
		10	1.10	2.00	3.10	4.40	6.00	7.90	10.00	12.70	15.60	
an.												

and a state	CHAPTER 5d. FLEXURE IN BEAMS Slide No. 52											
. A.	Rea Post	Doubly Reinforced Beam Analysis										
	Table o. Areas of Multiple of Keinforcing Bars (In ²) Number											
		ofbars	#3	#4	\$5	<u>Б</u> #6	ar numb #7	er #8	#9	#10	#11	
		1	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27	1.56	
		2	0.22	0.40	0.62	0.88	1.20	1.58	2.00	2.54	3.12	
		3	0.33	0.60	0.93	1.32	1.80	2.37	3.00	3.81	4.68	
		4	0.44	0.80	1.24	1.76	2.40	3.16	4.00	5.08	6.24	
		5	0.55	1.00	1.55	2.20	3.00	3.95	5.00	6.35	7.80	
		6	0.66	1.20	1.86	2.64	3.60	4.74	6.00	7.62	9.36	
		7	0.77	1.40	2.17	3.08	4.20	5.53	7.00	8.89	10.92	
		8	0.88	1.60	2.48	3.52	4.80	6.32	8.00	10.16	12.48	
		9	0.99	1.80	2.79	3.96	5.40	7.11	9.00	11.43	14.04	
		10	1.10	2.00	3.10	4.40	6.00	7.90	10.00	12.70	15.60	
chern-												

E.	CHAPTER 5d. FLEXURE IN BEAMS Slide No. 57										
-A.	Doubly Dainforned Danna Analysia										
ALL	Doubly Reinforced Death Analys										
	■ T	able 7.	Design	Constan	its						
					Recommende	d Design Values					
		f_{c}^{\prime}	$\left[\frac{3\sqrt{f_c'}}{f_y} \ge \frac{200}{f_y}\right]$	ρ _b	ρ	R (ksi)					
				$f_v = 40,000 \text{ psi}$							
		3000	0.0050	0.03712	0.0135	482.82					
		4000	0.0050	0.04949	0.0180	643.76					
-		5000	0.0053	0.05823	0.0225	804.71					
		6000	0.0058	0.06551	0.0270	965.65					
		$f_v = 50,000 \text{ psi}$									
		3000	0.0040	0.02753	0.0108	482.80					
		4000	0.0040	0.03671	0.0144	643.80					
		5000	0.0042	0.04318	0.0180	804.70					
		6000	0.0046	0.04858	0.0216	965.70					
				$f_v = 60,000 \text{ psi}$							
		3000	0.0033	0.0214	0.0090	482.82					
		4000	0.0033	0.0285	0.0120	643.76					
		5000	0.0035	0.0335	0.0150	804.71					
		6000	0.0039	0.0377	0.0180	965.65					
		3000	0.0027	0.0155	0.0072	482.80					
		4000	0.0027	0.0207	0.0096	643.80					
		5000	0.0028	0.0243	0.0120	804.70					
		6000	0.0031	0.0274	0.0144	965.70					

