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Introduction

Bending moment produces bending 
strains on a beam, and consequently 
compressive and tensile stresses.
Under positive moment (as normally the 
case), compressive stresses are produced 
in the top of the beam and tensile stresses 
are produced in the bottom.
Bending members must resist both 
compressive and tensile stresses.
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Introduction (cont’d)

Stresses in a Beam
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Introduction (cont’d)
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Beams: Mechanics of Bending 
Review

Introduction
– The most common type of structural member 

is a beam.
– In actual structures beams can be found in an 

infinite variety of
• Sizes
• Shapes, and
• Orientations
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Beams: Mechanics of Bending 
Review

Introduction
Definition

A beam may be defined as a member whose
length is relatively large in comparison with
its thickness and depth, and which is loaded
with transverse loads that produce significant
bending effects as oppose to twisting or axial
effects
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Beams: Mechanics of Bending 
Review

Pure Bending:  Prismatic members 
subjected to equal and opposite couples 
acting in the same longitudinal plane
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Flexural Normal Stress

Beams: Mechanics of Bending 
Review

For flexural loading and linearly
elastic action, the neutral axis passes 
through the centroid of the cross section
of the beam.
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Beams: Mechanics of Bending 
Review

The elastic flexural formula for normal 
stress is given by

I
Mcfb =       (1)

where
fb = calculated bending stress at outer fiber of the cross section
M = the applied moment
c = distance from the neutral axis to the outside tension or

compression fiber of the beam
I = moment of inertia of the cross section about neutral axis
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Beams: Mechanics of Bending 
Review

By rearranging the flexure formula, the 
maximum moment that may be applied 
to the beam cross section, called the 
resisting moment, MR, is given by

c
IFM b

R = (2)

Where Fb = the allowable bending stress
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Beams: Mechanics of Bending 
Review

Example 1
Determine the maximum flexural stress 
produced by a resisting moment MR of 
+5000 ft-lb if the beam has the cross 
section shown in the figure.
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Beams: Mechanics of Bending 
Review

Example 1 (cont’d)
First, we need to locate the neutral axis 
from the bottom edge:
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Beams: Mechanics of Bending 
Review

Example 1 (cont’d)
Find the moment of inertia I with respect to 
the x axis using parallel axis-theorem: 
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Beams: Mechanics of Bending 
Review

Internal Couple Method
– The procedure of the flexure formula is easy 

and straightforward for a beam of known 
cross section for which the moment of inertia I
can be found.

– However, for a reinforced concrete beam, the 
use of the flexure formula can be somewhat 
complicated.

– The beam in this case is not homogeneous 
and concrete does not behave elastically.
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Beams: Mechanics of Bending 
Review

Internal Couple Method (cont’d)
– In this method, the couple represents an 

internal resisting moment and is composed of 
a compressive force C and a parallel internal 
tensile force T as shown in Fig. 1.

– These two parallel forces C and T are 
separated by a distance Z, called the moment 
arm. (Fig. 1)

– Because that all forces are in equilibrium, 
therefore, C must equal T.
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Beams: Mechanics of Bending 
Review

Internal Couple Method (cont’d)
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Beams: Mechanics of Bending 
Review

Internal Couple Method (cont’d)
– The internal couple method of determining  

beam stresses is more general than the 
flexure formula because it can be applied to 
homogeneous or non-homogeneous beams 
having linear or nonlinear stress distributions.

– For reinforced concrete beam, it has the 
advantage of using the basic resistance 
pattern that is found in a beam.
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Beams: Mechanics of Bending 
Review

Example 2
Repeat Example 1 using the internal couple 
method.
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Beams: Mechanics of Bending 
Review

Example 2 (cont’d)
– Because of the irregular area for the tension 

zone, the tensile force T will be broken up into 
components T1, T2, and T3.

– Likewise, the moment arm distance Z will be 
broken up into components Z1, Z2, and Z3, 
and calculated for each component tensile 
force to the compressive force C as shown in 
Fig. 2.
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Beams: Mechanics of Bending 
Review

Example 2 (cont’d)
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Methods of Analysis and Design

Elastic Design
– Elastic design is considered valid for the 

homogeneous plain concrete beam as long as 
the tensile stress does not exceed the 
modulus of rupture fr.

– Elastic design can also be applied to a 
reinforced concrete beam using the working 
stress design (WSD) or allowable stress 
design (ASD) approach.
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Methods of Analysis and Design

WSD or ASD Assumptions
– A plain section before bending remains 

plane after bending.
– Stress is proportional to strain (Hooke’s

Law).
– Tensile stress for concrete is considered 

zero and reinforcing steel carries all the 
tension.

– The bond between the concrete and steel 
is perfect, so no slip occurs.
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Methods of Analysis and Design

Strength Design Method
– This method is the modern approach for the 

analysis and design of reinforced concrete.
– The assumption are similar to those outlined 

for the WSD or ASD with one exception:
• Compressive concrete stress is approximately 

proportional to strain up to moderate loads. As the 
load increases, the approximate proportionality 
ceases to exit, and the stress diagram  takes a 
shape similar to the concrete stress-strain curve of 
the following figure.
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Methods of Analysis and Design

Concrete Compressive Strength
Figure 3
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Methods of Analysis and Design

Comparison between the Two Methods

Service loads are amplified 
using partial safety factors.
A member is design so that its 

strength is reduced by a 
reduction safety factor.
The strength at failure is 

commonly called the ultimate 
strength
Formula:

Working (service) loads are 
used and a member is designed 
based on an allowable 
compressive bending stress, 
normally 0.45
Compressive stress pattern is 

assumed to vary linearly from 
zero at the neutral axis.
Formula:

USDWSD or ASD
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FS 1

∑
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m
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m
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Behavior Under Load
(1) At very small loads:

h d

( )comp.cε

( )tens.cε

( )tens.sε

( )comp.cf

( )tens.cf

( )tens.sf

Reinforced Concrete Beam

Stresses Elastic and
Section Uncracked

Stresses are below modulus of rupture.

N.A.

b
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Behavior Under Load
(2) At moderate loads:

Stresses Elastic and
Section Cracked 

• Tensile stresses of concrete will be exceeded.
• Concrete will crack (hairline crack), and steel bars will resist tensile stresses.
• This will occur at approximately 0.5     .

Reinforced Concrete Beam

h d

( )comp.cε

( )tens.sε

( )comp.cf

( )tens.sf
N.A.

b

cf ′
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Behavior Under Load

Reinforced Concrete Beam Formula
The neutral axis for a concrete beam is 
found by solving the quadratic equation:

0
2
1 2 =−+ dnAxnAbx ss (1)

b
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x x
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Behavior Under Load
(3) With further load increase:

Flexural Strength
ACI Approach 

• Stress curve above N.A. will be similar to the stress-strain curve of Fig. 3.
• Concrete has cracked, and the process is irreversible.
• Steel bar has yielded and will not return to its original length.

Reinforced Concrete Beam

h d
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Strength Design Method 
Assumptions

Basic Assumption:
– A plane section before bending remains 

plane after bending.
– Stresses and strain are approximately 

proportional up to moderate loads 
(concrete stress ≤ 0.5       ).  When the load 
is increased, the variation in the concrete 
stress is no longer linear.

– Tensile strength of concrete is neglected in 
the design of reinforced concrete beams.

cf ′
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Strength Design Method 
Assumptions

Basic Assumption (cont’d):
4. The maximum usable concrete 

compressive strain at the extreme fiber is 
assumed equal to 0.003 (Fig. 4)

5. The steel is assumed to be uniformly 
strained to the strain that exists at the 
level of the centroid of the steel.  Also if 
the strain in the steel εs is less than the 
yield strain of the steel εy, the stress in 
the steel is Es εs.  If εs ≥ εy, the stress in 
steel will be equal to fy (Fig. 5)
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Strength Design Method 
Assumptions

Basic Assumption (cont’d):
6. The bond between the steel and concrete 

is perfect and no lip occurs.

Strain

St
re

ss fy

Elastic
region

εy

Idealized Stress-Strain Curve

0.003

εy

Figure 5
Figure 4

Strain
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Flexural Strength of Rectangular 
Beams

Ultimate Moment Strength Capacity
– The ultimate moment for a reinforced 

concrete beam can be defined as the moment 
that exists just prior to the failure of the beam.

– In order to evaluate this moment, we have to 
examine the strains, stresses, and forces that 
exist in the beam.

– The beam of Fig. 6 has a width of b, an 
effective depth d, and is reinforced with a 
steel area As.
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Ultimate Strength
Flexural Strength
ACI Approach 

Reinforced Concrete Beam

h d

( )limit a as 0.003cε

N.A.

b

ys εε ≥ limit a as ys ff =

cf ′

C

T

Figure 6
Strain Stress Force

Flexural Strength of Rectangular 
Beams

Z
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Flexural Strength of Rectangular 
Beams

Possible Values for Concrete Strains due 
to Loading (Modes of Failure)

1. Concrete compressive strain is less than 
0.003 in./in. when the maximum tensile steel 
unit equal its yield stress fy as a limit.

2. Maximum compressive concrete strain 
equals 0.003 in./in. and the tensile steel unit 
stress is less than its yield stress fy.
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Flexural Strength of Rectangular 
Beams

Nominal Moment Strength
– The forces C and T, and the distance Z

separated them constitute an internal resisting 
couple whose maximum value is termed 
nominal moment strength of the bending 
member.

– As a limit, this nominal strength must be 
capable of resisting the actual design bending 
moment induced by the applied loads.
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Flexural Strength of Rectangular 
Beams

Nominal Moment Strength (cont’d)
– The determination of the moment strength is 

complex because of
• The shape of the compressive stress diagram 

above the neutral axis
• Not only is C difficult to evaluate but also its 

location relative to the tensile steel is difficult to 
establish

limit a as ys ff =

cf ′

Stress
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Flexural Strength of Rectangular 
Beams

How to Determine the Moment Strength 
of Reinforced Concrete Beam?

– To determine the moment capacity, it is 
necessary only to know
1. The total resultant compressive force C in the 

concrete, and
2. Its location from the outer compressive fiber, 

from which the distance Z may be 
established.
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How to Determine the Moment Strength of 
Reinforced Concrete Beam? (cont’d)
– These two values may easily be established 

by replacing the unknown complex 
compressive stress distribution by a fictitious 
(equivalent) one of simple geometrical shape 
(e.g., rectangle).

– Provided that the fictitious distribution results 
in the same total C applied at the same 
location as in the actual distribution when it is 
at the point of failure.

Flexural Strength of Rectangular 
Beams
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The Equivalent Rectangular Block

Any complicated function can be replaced 
with an equivalent or fictitious one to make 
the calculations simple and will give the 
same results.
For purposes of simplification and practical 
application, a fictitious but equivalent 
rectangular concrete stress distribution 
was proposed.
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The Equivalent Rectangular Block

This rectangular stress distribution was 
proposed by Whiney (1942) and 
subsequently adopted by the ACI Code
The ACI code also stipulates that other 
compressive stress distribution shapes 
may be used provided that they are in 
agreement with test results.
Because of its simplicity, however, the 
rectangular shape has become the more 
widely stress distribution (Fig. 7).
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The Equivalent Rectangular Block

Whitney’s Rectangular Stress Distribution

cf ′
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2
adjdZ −==

Actual Compressive
Stress Block

Rectangular
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Stress Block
Internal Couple

Figure 7
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The Equivalent Rectangular Block

Whitney’s Rectangular Stress Distribution
– According to Fig. 7, the average stress 

distribution is taken as

– It is assumed to act over the upper area on 
the beam cross section defined by the width b
and a depth a as shown in Fig. 8.

cf ′= 0.85  Stress Average (2)
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The Equivalent Rectangular Block
Whitney’s Rectangular Stress Distribution
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The Equivalent Rectangular Block
Whitney’s Rectangular Stress Distribution
– The magnitude of a may determined by

ca 1β=
Where
c = distance from the outer fiber to the neutral axis
β1 = a factor dependent on concrete strength, and is given by









>′
≤′<′×−

≤′

=
psi 000,8for                          0.65

psi 000,8psi 4,000for          105051

psi 000,4for                          85.0

c

c
5

c

1

f
ff.

f

c
-β

(3)

(4)
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The Equivalent Rectangular Block

Whitney’s Rectangular Stress Distribution
– Using all preceding assumptions, the stress 

distribution diagram shown in Fig. 8a can be 
redrawn in Fig. 8b.

– Therefore, the compressive force C can be 
written as

– That is, the volume of the compressive block 
at or near the ultimate when the tension steel 
has yielded εs > εy.

bafc′85.0
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The Equivalent Rectangular Block

Whitney’s Rectangular Stress Distribution
– The tensile force T can be written as Asfy. 

Thus equilibrium suggests C = T, or

– or
ysc fAbaf =′85.0

bf
fA

a
c

ys

′
=

85.0

(5)

(6)
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The Equivalent Rectangular Block
Whitney’s Rectangular Stress Distribution
– The moment of resistance of the section, that 

is, the nominal strength Mn can be expressed 
as

– Using Whitney’s rectangular block, the lever 
arm is

– Hence, the nominal resisting moment becomes

( ) ( ) jdbafMjdfAM cnysn ′== 85.0or         

2
adjd −=







 −′=






 −=

2
85.0or         

2
adbafMadfAM cnysn

(7)

(8)

(9)
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The Equivalent Rectangular Block

Whitney’s Rectangular Stress Distribution
– If the reinforcement ratio ρ = As/bd, Eq. 6 can 

be rewritten as

– If r = b/d, Eq. 9 becomes

c

y

f
df

a
′

=
85.0
ρ

(10)









′

−=
c

y
yn f

df
dfrdM

7.1
ρ

ρ 2 (11)
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The Equivalent Rectangular Block

Whitney’s Rectangular Stress Distribution
– or

– where ω = ρfy / fc`. Eq. 12 sometimes 
expressed as

– where

( )[ ]359.01 dfrM cn ωω −′= (12)

2RbdM n =

( )ωω 59.01−′= cfR

(13)

(14)
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Balanced, Overreinforced, and 
Underreinforced Beams

Strain Distribution

Strain
St

re
ss fy

Elastic
region

εy

Idealized Stress-Strain Curve

0.003

εy

Figure 10
Figure 9

Strain
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Balanced, Overreinforced, and 
Underreinforced Beams

Strain Distribution
0.003

εy

Balanced N.A.

Overreinforced N.A.

Underreinforced N.A.
E
f y

y =ε
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Balanced, Overreinforced, and 
Underreinforced Beams

Balanced Condition:
εs = εy and    εc = 0.003

Overreinforced Beam
εs < εy, and εc = 0.003.  The beam will have more 
steel than required to create the balanced condition.  
This is not preferable since will cause the concrete to 
crush suddenly before that steel reaches its yield 
point.

Underreinforced Beam
εs > εy, and εc = 0.003.  The beam will have less steel 
than required to create the balanced condition.  This 
is preferable and is ensured by the ACI
Specifications.
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Balanced, Overreinforced, and 
Underreinforced Beams

Example 3
Determine the nominal 
moment Mn for a beam of 
cross section shown, where    
= 4,000 psi.  Assume A615 
grade 60 steel that has a 
yield strength of 60 ksi and a 
modulus of elasticity = 29 ×
106 psi. Is the beam under-
reinforced, over-reinforced, or 
balanced?

10 in.

25 in.
23 in.

N.A.

cf ′
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Balanced, Overreinforced, and 
Underreinforced Beams

Example 3 (cont’d)

N.A

cf ′85.0

a

01 ′′

32 ′′

3 #8 bars

abfC c′= 85.0
2
a

ys fAT =

c

cε

sε

2
adjd −=
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Example 3 (cont’d)
1) Table (see in 0.79 bar  8 No.for  Area 2=

( ) 2in 37.279.03 Therefore, ==sA

Assume that fy for steel exists subject to later check.

( )
( )( ) in. 18.4

10485.0
6037.2

85.0

85.0

==
′

=

=′
=

bf
fA

a

fAabf
TC

c

ys

ysc

10 in.

25 in.
23 in.

N.A.

(Also see Table 4.2(a) Text)

2
a

cf ′85.0

abfC c′= 85.0

ss fAT =

2
adjd −=

..AN

sA

b
ac 2

a

cf ′85.0

abfC c′= 85.0

ss fAT =

2
adjd −=

..AN

sA

b
ac
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Bar Designation  Diameter  
in  

Area  
in2  

Weight  
lb/ft  

#3 [#10] 0.375 0.11 0.376 
#4 [#13] 0.500 0.20 0.668 
#5 [#16] 0.625 0.31 1.043 
#6 [#19] 0.750 0.44 1.502 
#7 [#22] 0.875 0.60 2.044 
#8 [#25] 1.000 0.79 2.670 
#9 [#29] 1.128 1.00 3.400 

#10 [#32] 1.270 1.27 4.303 
#11 [#36] 1.410 1.56 5.313 
#14 [#43] 1.693 2.25 7.650 
#18 [#57] 2.257 4.00 13.60 

 

Table 1.  ASTM Standard - English Reinforcing Bars

Note: Metric designations are in brackets
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Example 3 (cont’d)
– Calculation of Mn

( )

kips-ft 8.247
12

4.973,2      

kips-in. 4.973,2
2
18.4236037.2

:steelon  Based
22

85.0       

22
       

==

=





 −=







 −=






 −′=







 −=






 −=

n

yscn

n

M

adfAadabfM

adTadCM

10 in.

25 in.
23 in.

N.A.

2
a

cf ′85.0

abfC c′= 85.0

ss fAT =

2
adjd −=

..AN

sA

b
ac 2

a

cf ′85.0

abfC c′= 85.0

ss fAT =

2
adjd −=

..AN

sA

b
ac
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Example 3 (cont’d)
– Check if the steel reaches its yield point 

before the concrete reaches its ultimate strain 
of 0.003:

• Referring to the next figure (Fig. 11), the neutral 
axis can be located as follows:

in. 92.4
85.0
18.4        

Therefore,
        

0.85       
:4 and 3 Eqs. Using

1

1

1

===

=
=

β

β
β

ac

ca
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Example 3 (cont’d)

N.A

cf ′85.0

a

01 ′′

32 ′′

3 #8 bars

abfC c′= 85.0
2
a

ys fAT =

c

003.0

sε

2
adZ −=

Figure 11

d
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Example 3 (cont’d)
– By similar triangles in the strain diagram, the 

strain in steel when the concrete strain is 
0.003 can be found as follows:

in./in. 011.0
92.4

92.423003.0003.0

003.0

=
−

=
−

=

−
=

c
cd

cdc

s

s

ε

ε

003.0

sε

32 ′′=d

c

The strain at which the steel yields is

in./in. 00207.0
1029

000,60
6 =×

==
s

y
y E

f
ε

Since εs (= 0.011) > εy (= 0.00207), the beam is under-reinforced


