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m Bending moment produces bending
strains on a beam, and consequently
compressive and tensile stresses.

m Under positive moment (as normally the
case), compressive stresses are produced
in the top of the beam and tensile stresses
are produced in the bottom.

m Bending members must resist both
compressive and tensile stresses.
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~ Introduction (cont’d)
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m Stresses in a Beam
Figure 1

e
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m Sign Convention Figure 2
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(b) Positive Shear (clockwise)
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(a) Positive Shear & Moment
(c) Positive Moment

(concave upward)
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~i” Beams: Mechanics of Bending
Review

m Introduction

— The most common type of structural member
is a beam.

— In actual structures beams can be found in an
infinite variety of
» Sizes
» Shapes, and
* Orientations
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| Beams: Mechanics of Bending
Review
D

m Introduction
Definition

A beam may be defined as a member whose
length is relatively large in comparison with
its thickness and depth, and which is loaded
with transverse loads that produce significant
bending effects as oppose to twisting or axial
effects
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Beams: Mechanics of Bending

Review

801b 50 1b

12 in. 26 in. 12 in.

R =801h R =5801b

la)

C .D

e —

M =960 1b - in, M'=9601b.in
(B}

Pure Bending: Prismatic members
subjected to equal and opposite couples
acting in the same longitudinal plane

LT,
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Beams: Mechanics of Bending

Review

m Flexural Normal Stress

For flexural loading and linearly

elastic action, the neutral axis passes
through the centroid of the cross section
of the beam.
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Beams: Mechanics of Bendmg

Review
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m The elastic flexural formula for normal
stress is given by

Mc

15 :T (1)

where

J» = calculated bending stress at outer fiber of the cross section

M = the applied moment

¢ = distance from the neutral axis to the outside tension or
compression fiber of the beam

1= moment of inertia of the cross section about neutral axis

—
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Beams: Mechanics of Bendm;

Review
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m By rearranging the flexure formula, the
maximum moment that may be applied
to the beam cross section, called the
resisting moment, M, is given by

FI
M,="2 2)
C

Where F, = the allowable bending stress
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)" Beams: Mechanics of Bendin

Review

m Example 1

Determine the maximum flexural stress
produced by a resisting moment My of
+5000 ft-Ib if the beam has the cross

section shown in the figure.
< 2"
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| Beams: Mechanics of Bending

Review

m Example 1 (cont’d)

First, we need to locate the neutral axis
I from the bottom edge:

Y
L —Z (12x6)+(2+3)2x6) _72 _,,

X yC: =

2x6+2x%x6 24
thl]:3” yCOlTl:6+2_3:5”:ymaX:C
Mc

5
| 3" Max. Stress = f, = N




2% CHAPTER 5a. FLEXURE IN BEAMS Slide No. 12
A1 - ENCE 454 OAssakkaf

i Beams: Mechanics of Bendin

Review

m Example 1 (cont’d)

Find the moment of inertia 7 with respect to
the x axis using parallel axis-theorem:

3 3
L R O3 Y P 23 e ) O oy
; 7 12 12
—4+48+36+48=136in"
(5x12)(5)
136

Max. Stress (com) = =2.21ksi
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-1~ Beams: Mechanics of Bending

Review
m Internal Couple Method
— The procedure of the flexure formula is easy

I and straightforward for a beam of known

s cross section for which the moment of inertia /
can be found.

— However, for a reinforced concrete beam, the
use of the flexure formula can be somewhat
complicated.

— The beam in this case is not homogeneous
and concrete does not behave elastically.
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Beams: Mechanics of Bendmg

Review
m Internal Couple Method (cont’d)

— In this method, the couple represents an
internal resisting moment and is composed of
a compressive force C and a parallel internal
tensile force T as shown in Fig. 1.

— These two parallel forces C and T are
separated by a distance Z, called the moment
arm. (Fig. 1)

— Because that all forces are in equilibrium,
therefore, C must equal T.

Jﬁ - CHAPTER 5a. FLEXURE IN BEAMS Slide No. 14
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Beams: Mechanics of Bendm;

Review
m Internal Couple Method (cont’'d)

Y

1 Centroidal axis

Neutral axis

C
———x yC

=T dA|:l b

Figure 1
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Beams: Mechanics of Bending
Review

m Internal Couple Method (cont’d)

— The internal couple method of determining
beam stresses is more general than the
flexure formula because it can be applied to
homogeneous or non-homogeneous beams
having linear or nonlinear stress distributions.

— For reinforced concrete beam, it has the

advantage of using the basic resistance
pattern that is found in a beam.

Lix

S
i
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Beams: Mechanics of Bending
Review

m Example 2

Repeat Example 1 using the internal couple
method.

[\
)
< W ol W
<
~
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Beams: Mechanics of Bending
Review

m Example 2 (cont’d)

— Because of the irregular area for the tension
) zone, the tensile force T will be broken up into
components T, T,, and Ts.

— Likewise, the moment arm distance Z will be
broken up into components Z,, Z,, and Z;,
and calculated for each component tensile
force to the compressive force C as shown in

Jfﬁ# CHAPTER 5a. FLEXURE IN BEAMS Slide No. 18
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Fig. 2.
=
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|~ Beams: Mechanics of Bending
Review
m Example 2 (cont’d)
| ‘ﬁ‘ 2” ‘%ftop %‘
=
C
C 5” Z, Z, 7,
" —F T,
2" j \ :T > T2
iL 6” i ‘ jbott ‘
fmid
Figure 2
]
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Example 2
(cont’d) < T T C
"
C l 5 Zy Z‘l 2
. T 4 —
l N - 1
2" ! jl = T > 5
— 3
i \ 6" | Joott | r
1 mid
C= favg xarea = 7/[1013 [(5)(2)] = Sflop From similar triangles:
foa 1
Tl = f;lvg xarea = m1d [(1)(2)] fmld fbott fmld = 3
bott
T2 = f;wg xarea = mid [(2)(6)] = 12f‘mid - 4fbott
L T; — f;wg x area = (fbott mid j[(z)(6)] 6f;)0tt . 6fmid .o fm]d f:bott
Slide No. 21
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Example 2
(cont’d) < T T C
5 "
C i Zy 2‘1 Z,
— 1" 3!,' < —\L' T,
" ) - > T,
? T l’ D — =
‘ ) 6 " bott
f mid
C=T=T+T,+T,
5
5f =— 4 6 -6f .
ﬁop 3 ﬂott + fijott + f;x)tt fmld — f;()p g bett
1 25
5 ftop = g fbott + 4fbott + 6fbon - szon = ?fbon
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Example 2
(cont’d) . T T C
"
C l 5 Z, Z‘l Z,
| T Vol
5 2rr l T jj b _ > T,
-3
‘ 6" ‘ | Jhott |
fmid
2 2
=—(5)+=1)=4in
=26)20) v,
Z, §(5)+2 =§in 5000(12)=Z,T, + Z,T, + Z,T,
=/2T1T+Z71T +Z.T
z=20)r1s20)= T | OVOZANTLLEAS
F=
ﬁ& CHAPTER 5a. FLEXURE IN BEAMS Slide No. 23
2" [« Siop —
Example 2
(cont’d) < T T c
C \L 5 Z3 le 22
- 1” 3’&.'.' _—\L’ Tl
_l 2" ] T ! - > T
L ‘ 13
—¢ T ’
fmld
1 136
60000=4 3 i |+ 220+ (1) =20 1

Therefore,

f bott

f max = ﬁop ﬂott =

=1,323.53 psi (Tension)

The maximum Stress is compressive stress :

(1 323.53)=2,205.88 psi = 2.21 ksi (Com)
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i~ Methods of Analysis and Design

m Elastic Design

— Elastic design is considered valid for the

homogeneous plain concrete beam as long as
= the tensile stress does not exceed the
modulus of rupture f.

— Elastic design can also be applied to a
reinforced concrete beam using the working
stress design (WSD) or allowable stress
design (ASD) approach.

7y CHAPTER 5a. FLEXURE IN BEAMS Slide No. 25
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“* Methods of Analysis and Design

m  WSD or ASD Assumptions
— A plain section before bending remains
plane after bending.
= — Stress is proportional to strain (Hooke’s
Law).

— Tensile stress for concrete is considered
zero and reinforcing steel carries all the
tension.

— The bond between the concrete and steel
is perfect, so no slip occurs.
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S 4 “Methods of Analysis and Design

m Strength Design Method

— This method is the modern approach for the
analysis and design of reinforced concrete.

— The assumption are similar to those outlined
for the WSD or ASD with one exception:

» Compressive concrete stress is approximately
proportional to strain up to moderate loads. As the
load increases, the approximate proportionality
ceases to exit, and the stress diagram takes a

shape similar to the concrete stress-strain curve of
the following figure.

5‘ £ CHAPTER 5a. FLEXURE IN BEAMS Slide No. 27
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B Methods of Analysis and Design

m Concrete Compressive Strength

J% = Gl psi

Figure 3

Srress (psi

0.0l 0,002 (.04 0.0004

Stramn {inJin}
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“Methods of Analysis and Design
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m Comparison between the Two Methods
WSD or ASD USD
m Working (service) loads are mService loads are amplified
i used and a member is designed | using partial safety factors.
based on an allowable =A member is design so that its
compressive bending stress, strength is reduced by a
normally 0.45 . reduction safety factor.
mCompressive stress pattern is aThe strength at failure is
assumed to vary linearly from commonly called the ultimate
zero at the neutral axis. strength
sFormula: - sFormula: &
R D IR, = Z7iLi
ES¥es i=1
ASD LRFD
=]

CHAPTER 5a. FLEXURE IN BEAMS

Slide No. 29

‘Behavior Under Load

—
ENCE 454 ©Assakkaf

—

(1) At very small loads:

Stresses Elastic and
Section Uncracked

I

L]

Reinforced Concrete Beam

\ g, (tens.) \ /. (tens.)

Stresses are below modulus of rupture.
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Behavior Under Load o

(2) At moderate loads:

vy v vy il
Stresses Elastic and D —
Section Cracked . 77
ection Lracke Reinforced Concrete Beam
El
«— b — &,(comp.) /.(comp.)
K d Na. Y |
L ¢ (tens /. (tens.)
L et —
v >
« Tensile stresses of concrete will be exceeded.
* Concrete will crack (hairline crack), and steel bars will resist tensile stresses.
e « This will occur at approximately 0.5, .
va "% CHAPTER 5a. FLEXURE IN BEAMS Slide No. 31
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£ BehaV10r Under Load

m Reinforced Concrete Beam Formula

The neutral axis for a concrete beam is
found by solving the quadratic equation:

%bx2 +ndx—nAd=0] (1)

d
g
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- Behavior Under Load
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(3)_With further load increase:

PPl
Flexural Strength D
ACI Approach - o

Reinforced Concrete Beam

* Stress curve above N.A. will be similar to the stress-strain curve of Fig. 3.
* Concrete has cracked, and the process is irreversible.
» Steel bar has yielded and will not return to its original length.

i
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Strength Design Method
Assumptions

m Basic Assumption:

— A plane section before bending remains
plane after bending.

— Stresses and strain are approximately
proportional up to moderate loads
(concrete stress < 0.5 f ). When the load
is increased, the variation in the concrete
stress is no longer linear.

— Tensile strength of concrete is neglected in
the design of reinforced concrete beams.
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ui Strength Demgn Method

Assumptions

m Basic Assumption (cont'd):

4. The maximum usable concrete
compressive strain at the extreme fiber is
assumed equal to 0.003 (Fig. 4)

5. The steel is assumed to be uniformly
strained to the strain that exists at the
level of the centroid of the steel. Also if
the strain in the steel ¢, is less than the
yield strain of the steel ¢, the stress in
the steel is E; ¢;. If &, > ¢, the stress in
steel will be equal to f (F|g 5)

£ ‘"ﬁ . CHAPTER 5a. FLEXURE IN BEAMS Slide No. 35
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- Strength Design Method e

Assumptions
m Basic Assumption (cont'd):

6. The bond between the steel and concrete
is perfect and no lip occurs.

& *4 0.003 «—— Elastic
region Figure 5

— e

Figure 4 Wi

Stress

g, Strain

<— —>
€

Strain Idealized Stress-Strain Curve
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Flexural Strength of Rectangular

Beams

m Ultimate Moment Strength Capacity

— The ultimate moment for a reinforced
concrete beam can be defined as the moment
that exists just prior to the failure of the beam.

— In order to evaluate this moment, we have to
examine the strains, stresses, and forces that
exist in the beam.

— The beam of Fig. 6 has a width of 5, an
effective depth d, and is reinforced with a
steel area 4.,.

£ ”@ . CHAPTER 5a. FLEXURE IN BEAMS Slide No. 37
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Flexural Stren;th of Rectan;ular

Beams
m Ultimate Strength D

Flexural Strength Reinforced Concrete Beam ‘
ACI Approach (0,003 asa limit)

— b — N e

I

- o - >
kg' >  fs :fy as a limit
Figure 6

Strain Stress Force
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kel Flexural Strength of Rectangular

Beams

m Possible Values for Concrete Strains due
to Loading (Modes of Failure)
= 1. Concrete compressive strain is less than

0.003 in./in. when the maximum tensile steel
unit equal its yield stress f, as a limit.

2. Maximum compressive concrete strain
equals 0.003 in./in. and the tensile steel unit
stress is less than its yield stress f,.

f %. CHAPTER 5a. FLEXURE IN BEAMS Slide No. 39
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L2 Flexural Strength of Rectangular

Beams

m Nominal Moment Strength
— The forces C and T, and the distance Z
separated them constitute an internal resisting
couple whose maximum value is termed
strength of the bending

member.

— As a limit, this nominal strength must be
capable of resisting the actual design bending
moment induced by the applied loads.
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Flexural Strength of Rectangular
Beams

m Nominal Moment Strength (cont’d)

— The determination of the moment strength is
complex because of

» The shape of the compressive stress diagram
above the neutral axis

* Not only is C difficult to evaluate but also its
location relative to the tensile steel is difficult to
establish

efc'»

PE—

>
f,=/f, asalimit

Stress

£ ”@ . CHAPTER 5a. FLEXURE IN BEAMS Slide No. 41
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Flexural Stren;th of Rectan;ular
Beams

m  How to Determine the Moment Strength
of Reinforced Concrete Beam?

= — To determine the moment capacity, it is
necessary only to know




r % - CHAPTER 5a. FLEXURE IN BEAMS Slide No. 42
A

ENCE 454 OAssakkal

Flexural Strength of Rectangular
Beams

m How to Determine the Moment Strength of
Reinforced Concrete Beam? (cont’d)

_ — These two values may easily be established

X by replacing the unknown complex
compressive stress distribution by a fictitious
(equivalent) one of simple geometrical shape
(e.g., rectangle).

— Provided that the fictitious distribution results
in the same total C applied at the same
location as in the actual distribution when it is
at the point of failure.

“ﬁ . CHAPTER 5a. FLEXURE IN BEAMS Slide No. 43
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i~ The Equivalent Rectangular Block

m Any complicated function can be replaced
with an equivalent or fictitious one to make

| the calculations simple and will give the

D same results.

m For purposes of simplification and practical
application, a fictitious but equivalent
rectangular concrete stress distribution
was proposed.
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“* The Equivalent Rectangular Block

m This rectangular stress distribution was
proposed by Whiney (1942) and
subsequently adopted by the ACI Code

& = The ACI code also stipulates that other
compressive stress distribution shapes
may be used provided that they are in
agreement with test results.

m Because of its simplicity, however, the
rectangular shape has become the more
widely stress distribution (Fig. 7).

]
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-i© The Equivalent Rectangular Block
m Whitney’s Rectangular Stress Distribution
eJ(‘c’ R 0-85fc' 4 Figure 7
| S 1 AN
. ? ¢ ‘T Be = C=0.85f'ab
________ NAL L
d
; Z=jd=d —%
i N l S T=Af
) Rectangular
Actual Compressive Equivalent Compressive Internal Couple
e Stress Block Stress Block
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" The Equivalent Rectangular Block

m Whitney’s Rectangular Stress Distribution
— According to Fig. 7, the average stress
| distribution is taken as
X
()
— It is assumed to act over the upper area on
the beam cross section defined by the width »
and a depth « as shown in Fig. 8.
=]
;f@g CHAPTER 5. FLEXURE IN BEAMS Slide No. 47
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i The Equivalent Rectangular Block
m Whitney’s Rectangular Stress Distribution
851
= a
15
“C=0.85 flab
jd=d —%
T=Af

Figure 8 (b)
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ik The Equlvalent Rectangular Bloc

m Whitney’s Rectangular Stress Distribution
— The magnitude of a may determined by

x a=pfc (3)
Where
¢ = distance from the outer fiber to the neutral axis
P, = a factor dependent on concrete strength, and is given by
0.85 for f! < 4,000 psi
B, =1105-5x10" £/ for 4,000 psi< £’ <8,000 psi 4)
0.65 for f! > 8,000 psi

>, CHAPTER 5a. FLEXURE IN BEAMS Slide No. 49
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e The Equivalent Rectangular Block

m Whitney’s Rectangular Stress Distribution

— Using all preceding assumptions, the stress
distribution diagram shown in Fig. 8a can be
s redrawn in Fig. 8b.

— Therefore, the compressive force C can be

written as
0.85f/ba

— That is, the volume of the compressive block
at or near the ultimate when the tension steel

has yielded & > ¢,.
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" The Equivalent Rectangular Block

m Whitney’s Rectangular Stress Distribution

— The tensile force T can be written as Af,,.
Thus equilibrium suggests C= T, or

0.85fba=4,f, (5)

—or

S ©)
0.85 /b

iﬁ;’ CHAPTER 5a. FLEXURE IN BEAMS Slide No. 51
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i The Equivalent Rectangular Block

m Whitney’s Rectangular Stress Distribution

— The moment of resistance of the section, that
is, the nominal strength M, can be expressed

as
= M,=(4,f)id or M, =(085fba)jd (7)

— Using Whitney’s rectangular block, the lever

arm is . a
e (8)

— Hence, the nominal resisting moment becomes

Mo fy(d —gj or M, =085 fc'ba(d —gj 9)
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td The Equivalent Rectangular BIOEEEI{

m Whitney’s Rectangular Stress Distribution

— If the reinforcement ratio p = A/bd, Eq. 6 can
be rewritten as

» g
0.85 f

(10)

—If r=b/d, Eq. 9 becomes

o 11
Mn—pdfy(d 1-712’] (11)

‘"ﬁ . CHAPTER 5a. FLEXURE IN BEAMS Slide No. 53
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i~ The Equivalent Rectangular Block

m Whitney’s Rectangular Stress Distribution
—or

=|wrf/(1-0.590)d* | (12)

—where o = pf, /f,. Eq. 12 sometimes

expressed as 7
M = Rbd (13)

— where

= af/(1-0.590) (14)
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b
r Balanced2 Overrelnforcedz and

Underreinforced Beams
m Strain Distribution
L —{0.003 — Elastic
X . fﬁion Figure 10
Figure 9 Wi
Y/ 2
’ )
s
g, Strain
N g, 7 Strain Idealized Stress-Strain Curve
g,

Slide No. 55
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u Balancedz Overrelnforcedz and

Underreinforced Beams
m Strain Distribution

_,0.003 |
/N
4
//C,
7
//
YA 1
/ Balanced V. A.
/l
/
//
Overreinforced V. A.
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" Balanced, Overreinforced, and
Underreinforced Beams
m Balanced Condition:
&=¢, and ¢ =0.003
m Overreinforced Beam
L & < g, and g, = 0.003. The beam will have more
steel than required to create the balanced condition.
This is not preferable since will cause the concrete to
crush suddenly before that steel reaches its yield
point.
m Underreinforced Beam
&> ¢, and g, = 0.003. The beam will have less steel
than required to create the balanced condition. This
is preferable and is ensured by the ACI
Specifications.
F=
5 @ - CHAPTER 5a. FLEXURE IN BEAMS Slide No. 57
| Balanced, Overreinforced, and
Underreinforced Beams
m Example 3
Determine the nominal < 10 in.
| moment M, for a beam of
& cross section shown, where NA.

25 in. ~[wEiirET A -

e 4,000 psi. Assume A615 -

grade 60 steel that has a
yield strength of 60 ksi and a s - |
modulus of elasticity = 29 x

106 psi. Is the beam under-

reinforced, over-reinforced, or

balanced?
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1 Balanced2 Overrelnforcedz and
Underreinforced Beams
m Example 3 (cont’d)
10 ; 0.85/" .
= )
< C=0.85f'ab
I e e e 1 a _______
jd=d==
3 #8 bars
oo o » T=Af,
gs
F=
5 @ . CHAPTER 5a. FLEXURE IN BEAMS Slide No. 59
r Balanced Ovegemforced__aid
Underremforced Beams
m Example 3 (cont’d)
Area for No.8bar =0.79in” (see Table1)
= Therefore, A, =3(0.79)=2.37 in’ (Also sce Table 4.2(a) Text) |

Assume that f, for steel exists subject to later check.

< 10/in. 2|
C=T
0.85f/ab= A, f, N.A.
. 251in, T[T T T T T N
_ A\f\ _ 237(60) =4.18in. N 23 in.
0.85/'b 0.85(4)10)
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3 Balanced2 Overreinforced, and

Underreinforced Beams
Table 1. ASTM Standard - English Reinforcing Bars
.. [Diameter Area lWeighf
Bar Designation Ln in2 Ib/ft
— #3 [#10] 0.375 0.11 0.376
LY #4 [#13] 0.500 0.20 0.668
#5 [#16] 0.625 0.31 1.043
#6 [#19] 0.750 0.44 1.502
#7 [#22] 0.875 0.60 2.044
< #8 [#25] 1.000 Co79 ) 2.670 —
#9 [#29] 1.128 1.00'\ 3.400
#10 [#32] 1.270 1.27 \ 4.303
#11 [#36] 1.410 1.56  \ 5.313
#14 [#43] 1.693 225 |\ 7.650
#18 [#57] 2.257 4.00 13.60
Note: Metric designations are in brackets \
=
r . CHAPTER 5a. FLEXURE IN BEAMS Slide No. 61
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b Balanced, Overreinforced, and

Underremforced Beams
= Example 3 (cont'd) < 10in.
— Calculation of M, NoA.

B M, = C(d —“j = T(d —“j 23 in.
2 2

M, =0.85 /;,'ab[d —aj =4, f;_(d —“j
( S |= AL 45 B

Based on steel :

M, = 2.37(60)(23 - 218j 2,973.4in.-kips ossab
:2’91723422478 ft - kips : T=4f,
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" Balanced, Overreinforced, and

[ﬁl

Underreinforced Beams
m Example 3 (cont’d)

— Check if the steel reaches its yield point

[ before the concrete reaches its ultimate strain
L of 0.003:

» Referring to the next figure (Fig. 11), the neutral
axis can be located as follows:
Using Egs.3and 4 :
B =0.85
a=pc
Therefore,
a 4.18

c=—=——-=4921n.
B 0.85

—_—
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| Balanced, Overreinforced, and

Underreinforced Beams
m Example 3 (cont'd) Figure 11
" 0.85f"
| 0 0.003 L a
A T / 1 2
a < C=0.85/"ab
< l
oNA LV Il et SR
23" d
Z=d-%
2
3 #8 bars
oo o » T'=Af,
gS
e
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“ Balanced. Overreinforced. and

[ﬁl

Underreinforced Beams
m Example 3 (cont’d)

0.003 can be found as follows:
0.0()3_57

S
c d-c

d—-c — 0.003 23-4.92

£,=0.003

=0.0111n./in.

C
The strain at which the steel yields is

f, 60,000

" E. 29x10°

=0.00207 in./in.

— By similar triangles in the strain diagram, the
strain in steel when the concrete strain is

‘%qﬁ‘

—_—
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0.003

d=23"

s

Since &,(= 0.011) > g (= 0.00207), the beam is under-reinforced




