The money a company ***spends*** for equipment is an ***investment*** which must be recovered as the machine is utilized on projects.
Ownership Cost
- Ownership cost accrue whether or not the equipment is used
 - Capital cost (purchase price)
 - Salvage value
 - Depreciation tax shield
 - Overhead expenses

Under the tax system of U.S., an owner can reduce the company’s tax burden and thereby lessen net machine cost by depreciating a machine’s loss in value with age.
Depreciation is used to recover capital expenses for most tangible business assets.

Tangible property is property that can be felt or touched. Its physical features are what make it useful to you - a machine.

Basis is a way of measuring your investment in an asset for tax purposes.
Ownership cost or cost basis includes amounts paid for:

- Purchase
- Sales tax on purchase
- Freight
- Installation and testing

Like-kind Exchange

- You **exchange** a machine having a book value of $50,000 for a new machine having a fair market value of $80,000.
- The basis of the new machine is $50,000.
- This is the basis (value) for tax depreciation purposes.
COST BASIS
Property Plus Cash

• If you **trade** a machine and pay money, the basis of the machine you receive is the basis of the machine you traded increased by the money paid.

COST BASIS
Property Plus Cash

• If you **trade** a machine and pay money:

• Basis (new) machine =

 basis old machine + money paid + $
COST BASIS
Sale and Purchase

• If you sell a machine as a separate transaction you would pay tax on the cash received which is greater than the basis (book value).

• If you sell a machine as a separate transaction and the amount received is less than the basis (book value), it is your lost.
CHAPTER 3c. EQUIPMENT COST

COST BASIS

Sale and Purchase

• If your sale of the old machine and purchase of the new are dependent on each other, the transactions are considered an exchange.

COST BASIS

Repairs

• If a repair increases the value of your machine, makes it more useful, or lengthens its life, the repair cost must be capitalized and depreciated.
COST BASIS

Repairs

- The *repair cost* must be capitalized and depreciated.
- You increase the basis of the machine by the cost of the repair.

DEPRECIATION TAX SHIELD

- The tax saving from depreciation is influenced by
 - the disposal method
 - the value received for the old machine
 - the initial value of the new machine
 - class life
 - the tax depreciation method
For situation where there is no gain on the exchange:

\[
\text{Total tax shield} = \sum_{n=1}^{N} t_c D_n \quad (4)
\]

Where

- \(N \) = individual yearly time periods within a life assumption of \(N \) years
- \(t_c \) = corporate tax rate
- \(D_n \) = annual depreciation amount in the \(n \)th time period

For situation where a gain results from exchange:

a. like-kind exchange, Eq. 4 is applicable.

b. Third-party sale:

\[
\text{Total tax shield} = \sum_{n=1}^{N} t_c D_n - \text{gain} \times t_c \quad (5)
\]

Gain is the actual salvage amount received at the time of disposal minus the book value.
DEPRECIATION TAX METHOD

- The Modified Accelerated Cost Recovery System (MACRS) is the US tax code depreciation rule. It applies to all tangible property placed in service after 1986.

Property Classes

- Property classes & Recovery periods
 - 5 year property - automobiles and trucks
 - 7 year property - any property that does not have a class life
CHAPTER 3c. EQUIPMENT COST

DEPRECIATION METHOD

- 200% declining balance or straight line method for 3, 5, 7, and 10 year property
- 150% declining balance method or straight line method for 15, and 20 year property

DEPRECIATION RATES

Table 1 (Table 3.1 Text)

<table>
<thead>
<tr>
<th>Year of life</th>
<th>3-yr property</th>
<th>5-yr property</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.33</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>0.45</td>
<td>0.32</td>
</tr>
<tr>
<td>3</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.08</td>
</tr>
</tbody>
</table>

Cars and light-duty trucks are classified as 3-yr property. Most other pieces of construction equipment are 5-yr.
Example 8

A 5-yr life class machine is purchased for $125,000. It is sold in the third year after purchase for $91,000. What are the depreciation amounts and what is the book value of the machine when it is sold? Will there be income tax, if so in what amount?

Example 8 (cont’d)

Using tax rates of Table 1:

$125,000 \times 0.20 = $25,000 \text{ depreciation at end of first year}

$125,000 \times 0.32 = $40,000 \text{ depreciation at end of second year}

$65,000

Value when sold = $125,000 - $65,000 = $60,000

Amount of gain (There will tax) = $91,000 - $60,000 = $31,000
Example 9

A company having a cost of capital rate of 8% purchases a $300,000 tractor. This machine has an expected service life of 4 years and will be used 2,500 hr per year. The tires on this machine cost $45,000. The estimated salvage value at the end of 4 years is $50,000. Calculate the hourly tax saving resulting from depreciation. Assume that the machine is a 5-yr type property and that there had been no gain on the exchange that procured the machine. The company’s tax rate is 37% under the tax code.

First calculate the annual depreciation amounts for each of the years. In this case, the tax code depreciation rate must be used to calculate depreciation:
Example 9 (cont’d)

- Annual Depreciation amounts of all for each of the years

<table>
<thead>
<tr>
<th>Year</th>
<th>5-yr property rates</th>
<th>BV_{n-1}</th>
<th>D_n</th>
<th>BV_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$300,000$</td>
</tr>
<tr>
<td>1</td>
<td>0.20</td>
<td>3000,000</td>
<td>60,000</td>
<td>240,000</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
<td>240,000</td>
<td>96,000</td>
<td>144,000</td>
</tr>
<tr>
<td>3</td>
<td>0.24</td>
<td>144,000</td>
<td>72,000</td>
<td>72,000</td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>72,000</td>
<td>48,000</td>
<td>24,000</td>
</tr>
<tr>
<td>5</td>
<td>0.08</td>
<td>24,000</td>
<td>24,000</td>
<td>0</td>
</tr>
</tbody>
</table>

Using Eq. 4, the tax shielding effect for the machine’s service life would be

- Using Eq. 4, the tax shielding effect for the machine’s service life would be

<table>
<thead>
<tr>
<th>Year</th>
<th>D_n</th>
<th>Shielded amount*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$60,000$</td>
<td>$22,200$</td>
</tr>
<tr>
<td>2</td>
<td>96,000</td>
<td>35,520</td>
</tr>
<tr>
<td>3</td>
<td>72,000</td>
<td>26,640</td>
</tr>
<tr>
<td>4</td>
<td>48,000</td>
<td>17,760</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$102,120$</td>
</tr>
</tbody>
</table>

* $D_n \times 37\%$

Tax saving from depreciation = \(\frac{102,120}{4 \text{yr}(2,500 \text{ hr/yr})} = 10.21/\text{hr}\)
This exercise illustrates how to calculate the a machine cost using the methods and approaches discussed in this chapter.

Determine the probable cost per hour of owning and operating a scraper given the following conditions:
- Engine 350HP diesel
- Overall cost of money 10%
PRACTICAL EXERCISE

- Useful life 5 years
- Hours used per year 2000
- Initial cost $470,000
- Cost of tires $30,000
- Estimated salvage value $60,000

PE-COST OF MONEY
(INTEREST RATE)

Sources of capital funds:
- Borrow
- Earnings
- Equity
PE - Ownership Cost

Time Value Method

- Deduct tire cost from the delivered price for large machines.
- Tires are considered a wear item and are treated as an operating cost.

Initial cost $470,000
Cost of tires $30,000

$440,000

Need to calculate the uniform series required to replace a present value of $440,000

Uniform series capital recovery factor
PE - Ownership Cost
Time Value Method

- Overall cost of money 10%
- Time 5 years
- **Uniform series capital recovery factor**

\[A = P \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right] \]

Example:
- **Overall cost of money 10%**
- **Time 5 years**

\[A = \$440,000 \left[\frac{0.10(1+0.10)^5}{(1+.10)^5 - 1} \right] \]

\[A = \$116,071 \text{ per year} \]
PE - Ownership Cost
Time Value Method

- Estimated salvage value
 $60,000
- Need to calculate the uniform series required to replace an end of period amount of $60,000

Uniform series sinking fund factor

||
|---|---|
|**Overall cost of money** | 10% |
|**Time** | 5 years |

Uniform series sinking fund factor

\[
A = F \left[\frac{i}{(1+i)^n - 1} \right]
\]
PE - Ownership Cost

Time Value Method

- Overall cost of money 10%
- Time 5 years

\[
A = \frac{0.10}{(1 + 0.10)^5 - 1} \left[\frac{60,000}{10.00} \right]
\]

\[
A = \$9,828 \text{ per year}
\]

\[
\frac{116,071 - 9,828}{2,000 \text{ hr / yr}} = \$53.12 / \text{ hour}
\]
PE - Ownership Cost

A\(I\) = \(\frac{P(n + 1) + S(n - 1)}{2n}\)

\(A\(I\)\) = average annual investment method
\(P\) = purchase price
\(S\) = salvage value
\(n\) = life in years

\[A\(I\) = \frac{$440,000(5 + 1) + $60,000(5 - 1)}{2 \times 5}\]

\(P\) = $440,000
\(S\) = $60,000
\(n\) = 5 years
PE - Ownership Cost

AAI

\[
AAl = \frac{\$440,000 \times 6 + \$60,000 \times 4}{10} = \$288,000/yr
\]

Investment Cost

\[
\text{Investment Cost} = \frac{\$288,000/\text{yr} \times 10\%}{2,000 \text{ hr/yr}} = \$14.40/\text{hour}
\]
PE - Ownership Cost

AAI

- **Depreciation**
 - $470,000
 - $30,000 tires
 - $60,000 salvage
 - **Total Depreciation: $380,000**

- **Hourly Depreciation**
 \[
 \frac{\$380,000}{5 \text{ yr} \times 2,000 \text{ hr / yr}} = \$38.00 / \text{hr}
 \]
CHAPTER 3c. EQUIPMENT COST

PE - Ownership Cost

◆ Hourly Depreciation

$14.40 + $38.00 = $52.40/hr

PE - OWNERSHIP COST

◆ Comparison

Time Value Method $53.12/hr
Average Annual Investment Method $52.40/hr

Difference between the methods $0.72
PE - OPERATING COST

- Annual cost of repairs equals 70% of straight Line depreciation
- Operating factor, 0.5
- Cost of fuel $1.02 per gal.

- Crankcase capacity, 14 gal
- Time between oil changes, 200 hr
- Cost of lube oil $2.50 per gal
- Cost of other oils and grease $0.45 per hour
CHAPTER 3c. EQUIPMENT COST

PE - OPERATING COST

- Repairs to tires 14% of tire depreciation
- Life of tires 4,000 hours

PE - OPERATING COST

Repair

- Hourly depreciation $38.00
- $38.00 X 70% = $26.60 per hour
OPERATING COST

Fuel

- Operating factor, 0.5
- Cost of fuel $1.02 per gal

\[0.04 \times 350\text{hp} \times 0.5 = 7 \text{ gal/hr} \]

\[7 \text{ gal} \times 1.02/\text{gal} = \$7.14/\text{hr} \]

Oil & Grease

\[q_{oc} = \frac{\text{hp} \times f \times 0.006 \text{ lb/hp-hr}}{7.4 \text{ lb/gal}} + \frac{c}{t} \]

- What the engine burns
- Oil changes

\[q_{oc} = \frac{350\text{hp} \times 0.5 \times 0.006}{7.4} + \frac{14 \text{ gal}}{200 \text{ hr}} \]

\[q_{oc} = 0.1418919 + 0.070 = 0.212 \text{ gal/hr} \]
OPERATING COST

Oil & Grease

- Cost of lube oil $2.50 per gal
- Cost other oils and grease $0.45/hr

\[
0.212 \text{ gal/hr} \times \$2.50/\text{gal} = \$0.53/\text{hr}
\]

Other oils and grease = $0.45/hr

Total cost O&G = $0.98/hr

Tire Repair

- Tire repairs 14% of tire depreciation
- Life of tires 4,000 hours

\[
\frac{\$30,000}{4,000 \text{ hr}} = \$7.50 \text{ per hour}
\]

\[
\$7.50 \times 14\% = \$1.05 \text{ per hour}
\]
OPERATING COST
Tire Depreciation

How many tire replacements?

- Life of tires 4,000 hours

\[
5 \text{ yr} \times \frac{2,000 \text{ hr}}{\text{yr}} = 2.5 \text{ sets}
\]

Therefore 3 sets

OPERATING COST
Tire Depreciation

First set: (purchased at time 0)

Spread the cost over the life of the machine

- Uniform series capital recovery factor

\[
\$30,000 \times \frac{0.10(1 + 0.10)^5}{(1 + 0.10)^5 - 1} = \$? / \text{hr}
\]

\[
\frac{2,000 \text{ hr}}{}
\]
OPERATING COST

Tire Depreciation

First set: (purchased at time 0)

\[
\frac{\$30,000 \times 0.2637975}{2,000 \text{ hr}} = \$3.96 / \text{hr}
\]

Second set: (purchased at time 2 yr) must first calculate value at time zero.

\[
P = \frac{\$30,000}{(1 + i)^n}
\]

\[
P = \frac{\$30,000}{(1 + 0.10)^2} = \$24,793
\]
OPERATING COST

Tire Depreciation

Second set: (purchased at time 2 yr)

Spread the cost over the live of the machine

--- Uniform series capital recovery factor

\[
\frac{\$24,793 \times 0.2637975}{2,000 \text{ hr}} = \$3.27 / \text{hr}
\]

OPERATING COST

Tire Depreciation

Third set: (purchased at time 4 yr)

must first calculate value at time zero.

\[
P = \frac{\$30,000}{(1 + i)^n}
\]

\[
P = \frac{\$30,000}{(1 + 0.10)^4} = \$20,490
\]
OPERATING COST

Tire Depreciation

Third set: (purchased at time 4 yr)
Spread the cost over the live of the **machine**

--- Uniform series capital recovery factor

\[
\frac{\$20,490 \times 0.2637975}{2,000 \text{ hr}} = \$2.70 / \text{hr}
\]

OPERATING COST

Tire Depreciation

- First set: $3.96/hr
- Second set: $3.27/hr
- Third set: $2.70/hr

Total Tire Dep. $9.93/hr
PE Operating Cost

- Repair $26.60/hr
- Fuel 7.14
- Lube Oils 0.98
- Tire repair 1.05
- Tire dep. 9.93
- Total Oper $45.70/hr

PE – SCRAPER COST

- Total Scraper Cost

COST = Ownership Cost + Operating Cost

Scraper Cost = $53.12/hr + $45.70/hr = $98.82/hr