

DFD								T	h		١.					67		2		Т	-		Т		NCE 4	20 ©A	lS
PER	FU		K	IV		4			ز	Ľ		L	U		K	V	ľ			I		U	下	ζ.			
		-				-		-	_							-			-								
A SU	IP	N	Í I	L I	D	C		P	T	1		T		r n		n	D										
ADU	JD.		U	4		D		D			2			U	V.												
Fig	ure 4.	Dat	fo		and		c		. f.		C _		an	D .,		C	h		~	140		Lo I	D	…	(C	D	~ ,
rig	ui e 4.		Carlos I								Torra and	Canal S			ipp	0	uv		C	13	, in	IC I	u	шþ	(G	-1/ (
	1	Model																		L							
		Solids																		L							
	T	Horse																		L							
	- 10	Hertz																									
																				I.							
								~	20/46																		
		. onug						4	30y40				ise, 6.8							ι.							
										or 5	575 vo	lt, 3 ph	ise, 6.8	kW						L							
		Cable								or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh	nt (pum	p and c						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth				7									
		Cable Weigh		p and c						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth				1									
		Cable Weigh	nt (pum otal hea	p and c ad ft						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth]									
		Cable Weigh	nt (pum otal hea	p and c ad ft 100						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth						-							
		Cable Weigh To 29 - 26 -	nt (pum otal hea	p and c ad ft 100 - 90 -						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh Tr m 29 - 26 - 24 -	otal hea	p and c ad ft 100 = 90 = 80 =						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh To m 29 - 26 - 24 - 22 - 20 -	otal here otal here otal - 35 - 30 -	p and c ad ft 100 - 90 -						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh 70 m 29 - 26 - 24 - 22 - 20 - 18 - 16 -	t (pum otal hear d0 - 35 - 30 - 25 -	p and c ad ft 100 - 90 - 80 - 70 -						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh 70 m 29 - 26 - 22 - 20 - 18 - 16 - 12 -	nt (pum otal hea 1b 35 - 30 - 25 - 20 -	p and c ad 100 = 90 = 80 = 70 = 60 =						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh 70 m 29 - 26 - 24 - 22 - 20 - 24 - 22 - 20 - 18 - 16 - 14 - 10 -	otal hes -40 = 35 = 25 = 20 = 15 =	p and c ad ft 100 = 90 = 80 = 70 = 60 = 50 =						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh 70 m 29 - 26 - 22 - 20 - 18 - 16 - 12 -	t (pum otal here 1b 35 - 30 - 25 - 20 - 15 - 10 -	p and c ad ft 100 = 90 = 80 = 70 = 60 = 50 = 40 =						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh 70 29 - 26 - 22 - 20 - 22 - 20 - 18 - 14 - 12 - 10 - 8 -	otal hes -40 = 35 = 25 = 20 = 15 =	p and c sd ft 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 -						or 5	575 vo #10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth													
		Cable Weigh 29 - 26 - 24 - 22 - 20 - 24 - 22 - 20 - 18 - 16 - 16 - 12 - 10 - 8 - 6 - 4 - 2 0 -	at (pum otal here otal here at (pum at	p and c ft 100 - 90 - 80 - 50 - 40 - 30 - 20 - 10 - 0 -	cable) .						#10	It, 3 ph gauge, 125	ase, 6.8	kW ngth		0	_ <u> </u>										
		Cable Weigh 29 - 26 - 22 - 20 - 18 - 14 - 14 - 10 - 8 - 6 - 4 - 2 - 20 - 16 - 14 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	t (pum otal here 1b 35 - 30 - 25 - 20 - 15 - 10 -	p and c ft 100 - 90 - 80 - 50 - 40 - 30 - 20 - 10 - 0 -		125		200	225	075	#10	lt, 3 ph gauge,	ase, 6.8 50-ft le	kW ngth	425	450											

Loss of Hea	ld	d	U	e	t	0	ł	ľ	ľ	ct	1	01	n	_	
in Pipe	Flow in						lominal	diamete	r of pipe	(in.)					
	U.S. (gpm)	1	3	1	11	11	2	21	3	4	5	6	8	10	12
	5 10 15 20	26.5 95.8	6.8 24.7 52.0 88.0	2.11 7.61 16.3 27.3	0.55 1.98 4.22 7.21	0.93 1.95 3.38	0.31 0.70 1.18	0.11 0.23 0.40	rithor Frame	fincio Bur Madel	innu ^c	squi tors	ni pe nira	sifug a Co	
Table 2 (Table 20-5 Text)	25 30 40	und beg	19	41.6 57.8	10.8 15.3 26.0	5.07 7.15 12.2	1.75 2.45 4.29	0.60 0.84 1.4	0.25 0.35 0.59		(0.8)			i liciti politi	
Water Friction Loss in Feet	50 75	3			39.0	18.5 39.0	6.43 13.6	2.2 4.6	0.9 2.0	0.22 0,48	0.16			(im)	
Per 100 ft for Clean Iron Steel Pipe.	100 125 150 175 200 225 250 275		部分の公共時間の		240 248 248 240 240 240 240 240 240	66.3	23.3 35.1 49.4 66.3	7.8 11.8 16.6 22.0 28.0 35.3 43.0	3.2 4.9 6.8 9.1 11.6 14.5 17.7 21.2	0.79 1.2 1.7 2.2 2.9 3.5 4.4 5.2	0.27 0.42 0.57 0.77 0.96 1.2 1.5 1.8	0.09 0.18 0.21 0.31 0.40 0.48 0.60 0.75	0.15 0.18	100000000	2325328E3
	300 350 400 500 600 700 800 900	ital dug too oll	10	5-51-1-	56- (44) (25)	er xu nonfli S(1,8) Cap	adocian Linto Linto Diretto	(15)-0) northe of 20(0) northe of	24.7 33.8	6.1 8.0 10.4 15.6 22.4 30.4	2.0 2.7 3.5 5.3 6.2 9.9	0.84 0.91 1.4 2.2 3.1 4.1 5.2 6.6	0.21 0.27 0.35 0.53 0.74 1.0 1.3 1.6	0.18 0.25 0.34 0.44 0.54	0.08 0.10 0.14 0.18 0.22
	1,000 1,100 1,200 1,300 1,400	28222	からから 50 年 11	えば、 てい しての しての	1050 1027 1027 1021 1031	(401) (305) (305) (301) (301) (305)			日本の			7.8 9.3 10.8 12.7 14.7	2.0 2.3 2.7 3.1 3.6	0.65 0.78 0.95 1.1 1.2	0.27 0.32 0.37 0.42 0.48
	1,500 2,000 3,000	27.4	18		360 J 260 J 200 J 200 J	3224.5 9465.5 6607.	100	100	1210	2 2 2	(05)) (05)) (05))	16.8	4.1 7.0	1.4 2.4 5.1	0.55 0.93 2.1
	4,000 5,000	c Cent	1	eren D							Utenti	T chur	and the second		3.5 5.5

 OSS									JE	T	`O		Slide No. ENCE 420 ©Assa
RIC	_			-									
Table		Fi	ttin	gs	and	d V	alve	es (Tab	le 2		llent , Te	
		P - P -	,				ninal siz						
Item	1	$1\frac{1}{4}$	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3	4	5	6	8	10	12	
90° elbow 45° elbow Tee, side	2.8 1.3	3.7 1.7	4.3 2.0	5.5 2.6	6.4 3.0	8.2 3.8	11.0 5.0	13.5 6.2	16.0 7.5	21.0 10.0	26.0 13.0	32.0 15.0	
outlet Close return bend	5.6	7.5	9.1	12.0		17.0	22.0	27.5	33.0	43.5	55.0	66.0	
Gate valve	6.3 0.6	8.4 0.8	10.2 0.9	13.0 1.2	15.0 1.4	18.5 1.7	24.0	31.0	37.0	49.0	62.0	73.0	
Globe valve	27.0	37.0	43.0	55.0	1.4 66.0	1.7	2.5 115.0	3.0 135.0	3.5	4.5	5.7	6.8	
Check valve	10.5	13.2	15.8	21.1	26.4	31.7	42.3	52.8	165.0 63.0	215.0 81.0	280.0 105.0	335.0	
Foot valve	24.0	33.0	38.0	46.0		64.0	75.0	76.0	76.0	81.0 76.0	76.0	125.0 76.0	
Courtesy The G	iorman-	Rupp C	ompany										

Ning and	CHAPTER 20. EQUIPMENT FC	R PL	JMP	ING	WA	TER									Slide No. 50
- A.	LOSS OF H	łł	CÆ		D	Ι)	U	E	1	[(D			ENCE 420 ©Assakkaf
	FRICTION	1	S 1	U	B	_	-	_	lameter				S]	E	
		Flow in U.S. (gpm)						(ii	ı.)		. 31	ist pipel aworld	A 320- Aunto		
		(gpm) 5	8 21.4	1 4 8.9	1 2.2	1 ¹ / ₄ 0.74	1 ¹ / ₂ 0.3	2	21/2	3	4	5	6	8	
		10 15	76.8	31.8 68.5	7.8 16.8	2.64 5.7	1.0 2.3	0.2 0.5				nioentes			
		20 25			28.7 43.2	9.6 14.7	3.9 6.0	0.9	0.32		io mi	itzangs based			
	Table 4 (Table 20-6, Text)	30 35			61.2 80.5	20.7 27.6	8.5 11.2	2.0 2.7	0.70 0.93	0.3 0.4					×
1.000	Water Friction Loss, in Feet Per	40 50				35.0 52.7	14.3 21.8	3.5	1.2	0.5	- udm	0.301			
	100 ft of Smooth Bore Hose.	60 70				73.5	30.2 40.4	7.3 9.8	2.5 3.3	1.0 1.3					
		80 90					52.0 64.2	12.6	4.3 5.3	1.7	0.5	-			
		100 125	16.9 010 pa	steller.	anyoan	tyribent.	77.4	18.9 28.6	6.5 9.8	2.6 4.0	0.6 0.9	infings: Post cos			
		150 175	nadi ə	om al s	in. pip	of the t	nero Uni	40.7 53.4	13.8 18.1	5.6 7.4	1.3 1.8	5	6	8	
		200 250	incuire of a co	to a nuritur	seec.c	pe cal	ed a di	68.5	23.4 35.0	9.6 14.8	2.3 3.5	0.8 1.2	0.32	on the .	
		300 350	nis, al	ciple	cied in 17 seb	une pr	more dipoin	ieader ayste	49.0	20.3 27.0	4.9 6.6	1.7 2.3	0.69	176	
		400 450	tis) (dit) Siladi gi	nji eno pinini	mstére takilen	indezine Wiesza	pidi phi bisi na	naraji Lidiga	nd ton	ind ad	8.4	2.9	1.1	0.28	
		500 1,000	inter and Etherater Starton	ndi ma pirita natat	eriologie / niterioliti s vElipite c	idayilgo Elvida i gatetingo	ine Lord I doubh Evilinio	diades nicola nicola	nneomi driveni senijsk	alli og alliwin 1.2010	10.5 12.7	3.6 4.3 15.6	1.4 1.7 6.4	0.35 0.43 1.6	
Mic		Courtesy Co	intractors	Pump Bi	areau.	ing train the train the con-	ir otoci ordprist and distance	ildaja Slavit Stavit	Saurea Sau 20 Sau 20	perawa do sián alsinha	dhiteann tias olad hgun pta	liq edi er, sta suoqli	ibava Raibij Ve do	Alba Palag	

Part and	CHAPTER 20. EQUIPMENT FOR PUMPING WATE	R Slide No. 61
. AL	Example 3 (contin	ued)
	From Table 3 (Table 20-5 Text):	
	Length of pipe: 25 + 24 + 166 -	- 54 + 10 = 279 ft
	One foot valve and strainer	= 76 ft
	3 90 ⁰ -elbows: 3 X 16	= 48 ft
	2 gate valves: 2 X 3.5	= 7 ft
	1 check valve: 1 X 63	= 63 ft
	Total equivalent length	= 473 ft
	From Table 2 (Table 20-4,Text) th	e friction loss per 100 ft of
	6-in pipe will be 3.10 ft	
	Total Head = Lift Head + Head lost in Fricti	on = $(15+54) + \left(\frac{473}{100} \times 3.1\right) = 83.7$ ft
	A model 90-M pump will deliver th	
	(see Table 5 (Table 20-2c, Text)	
Mc Graw		

able	3. L	en	ath	of	Ste	eel	Pip	e (f	t)E	qui	vale	ent to)
			•				•	•	,	•		Text	
TABLE 16-											Ο,		,
Length of		pipe	, in f	eet, e	quiva	alent	to fitti	ngs ai	nd val	ves			
						Non	inal siz	e (in.)					
Item	1	$1\frac{1}{4}$	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3	4	5	6	8	10	12	
90° elbow	2.8 1.3	3.7 1.7	4.3 2.0	5.5 2.6	6.4 3.0	8.2 3.8	11.0 5.0	13.5 6.2	16.0 7.5	21.0 10.0	26.0 13.0	32.0 15.0	
45° elbow			0.1	12.0	13.5	17.0	22.0	27.5	22.0	43.5	55.0	66.0	
Tee, side outlet Close return	5.6	7.5	9.1	12.0	15.5	17.0	22.0	27.5	33.0	45.5	55.0	00.0	
Tee, side outlet	5.6 6.3 0.6	8.4	10.2	13.0	15.0	18.5	24.0	31.0	37.0	49.0	62.0	73.0	
Tee, side outlet Close return bend	6.3												

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_									-					-
Table 2 (Table 20-5 Text) Water Friction Loss in Feet Per 100 ft for Clean Iron Steel Pipe.	U.S.	4	1	1	11	_		_		(in.) 4	5	6	8	10	12
Table 2 (Table 20-5 Text) 30 378 133 715 245 0.44 0.35 -16 -16 Water Friction Loss in Feet 90 390 380 643 22 0.90 0.22 0.27 0.06 Per 100 ft for Clean Iron Steel 100 100 113 49 113 49 100 113 49 100 116 29 002 002 002 002 002 002 002 002 002 000 002 <t< td=""><td>10 15</td><td></td><td>24.7 52.0</td><td>7.61 16.3</td><td>1.98 4.22</td><td>1.95</td><td>0.70</td><td>0.23</td><td>er and</td><td></td><td></td><td>sdin fors</td><td>al pa ntra</td><td>Affag n Cc</td><td>1 200</td></t<>	10 15		24.7 52.0	7.61 16.3	1.98 4.22	1.95	0.70	0.23	er and			sdin fors	al pa ntra	Affag n Cc	1 200
Per 100 ft for Clean Iron Steel 100 125 130 200 200 200 200 200 200 200 100 125 130 200 200 100 125 130 111 200 113 200 200 13 20 200 13 20 200 13 20 207 031 207 031 207<	 30 40 50	ind big of	19		15.3 26.0	7.15 12.2 18.5	2.45 4.29 6.43	0.84 1.4 2.2	0.35 0.59 0.9	0.22		1.16) - 01		10000	
300 27 6.1 2.0 0.84 0.21 330 30.0 33.8 8.0 3.7 0.9 2.7 0.91 0.35 300 10.4 3.5 1.4 0.35 1.4 0.35 300 22.4 6.2 3.1 0.74 0.25 0.14 0.35 600 20.0 2.2.4 6.2 3.1 0.74 0.25 0.14 0.35 900 30.4 9.9 4.1 0.4 0.54 0.14 0.35 900 30.4 9.9 4.1 0.4 0.54 0.44 0.83 900 30.0 9.9 4.1 0.55 0.54 0.55 0.54 0.54 0.54 0.54 0.54 0.55	100 125 150 175 200 225 250		3月1日出版目言		2 AR 2 AR 2 AR 2 AR 2 AR 2 AR 2 AR 2 AR	(82.) (82.) (82.) (82.) (82.) (82.)	35.1 49.4 66.3	11.8 16.6 22.0 28.0 35.3	4.9 6.8 9.1 11.6 14.5 17.7	1.2 1.7 2.2 2.9 3.5 4.4	0.42 0.57 0.77 0.96 1.2 1.5	0.18 0.21 0.31 0.40 0.48 0.60		19503555	
	350 400 500 600 700 800	itadi itadi itadi itadi itadi itadi itadi itadi itadi		20 20	, 56 Rej	ector bondia	nterio aberio 1.005	(30 (30)-0) (3	33.8	8.0 10.4 15.6 22.4	2.7 3.5 5.3 6.2	0.91 1.4 2.2 3.1 4.1 5.2	0.27 0.35 0.53 0.74 1.0 1.3	0.25 0.34 0.44	0.10 0.14 0.18
1,500 2,000 10.8 4.1 1.4 0.55 7.0 2.4 0.93 5.1 2.4 5.1 2.4 5.1 2.4 0.93	1,000 1,100 1,200 1,300		34 50 50 FE	に、内口 と、内口 し、口口 に、口口 に、口口	接其 10년 10년 10년	(305.5 (305.5 (300.1) (307.5					554.0 (244.5 (146.4 (244.4) (244.4)	9.3 10.8 12.7	2.3 2.7 3.1	0.78 0.95 1.1	0.32 0.37 0.42
	2,000	27.4 27.4 30.5	18	61630). 61610 (61610 (000E	STREE.	100		国際	1986 II 1976 II 1974 II	026.9 026.9	16.8		2.4	0.93

CHAPTER 20. EQUIPMENT FOR						1				1	Slide No.
🚰 Example 3 (CO	n	til	nu	le	d)					
	ma		red in		nce wit		rds of	entrifug the Con			
	-				Model	90-M (6-ir	n.)	- 085	nië q	n ali en do	1
Table 5 (20-2c)	inc	al head luding iction	10	(3.0)	Height 15	of pump a (4.6)	bove wat	er [ft (m)] (6.1)	25	(7.6)	
		t (m)]		11	(apacity [g	pm (l/mi	n)†]			0
	25 30 40 50	(7.6) (9.1) (12.2) (15.2)	1,500 1,480 1,430 1,350	(5,678) (5,602) (5,413) (5,110)	1,280 1,230 1,160	(4,845) (4,656) (4,391)	1,050 1,020 970	(3,974) (3,861) (3,672)	790 780 735	(2,990) (2,952) (2,782)	
	60 70 80	(18.3) (21.3) (24.4)	1,225 1,050 800	(4,637) (3,974) (3,028)	1,050 900 680	(3,974) (3,407) (2,574)	900 775 600	(3,407) (2,933) (2,271)	690 610 490	(2,612) (2,309) (1,855)	
	90 100	(27.4) (30.5)	450 100	(1,703) (379)	400 100	(1,514) (379)	365 100	(1,382) (379)	300 100	(1,136) (379)	
	101	121.91			Model	125-M (8-i	n.)	n totertet -	*	and a share	
	inc	al head luding ction	10	(3.0)	Height 15	of pump al (4.6)	bove wat 20	er [ft (m)] (6.1)	25	(7.6)	ad ib
		(m)]			C	apacity [g	pm (l/mi	n)†]		10	12
	25 30 40	(7.6) (9.1) (12.2)	2,100 2,060 1,960	(7,949) (7,797) (7,419)	1,850 1,820 1,740	(7,002) (6,889) (6,586)	1,570 1,560 1,520	(5,943) (5,905) (5,753)	1,200 1,170	(4,542) (4,429)	0
	50 60 70 80	(15.2) (18.3) (21.3) (24.4)	1,800 1,640 1,460 1,250	(6,813) (6,207) (5,526) (4,731)	1,620 1,500 1,340 1,170	(6,132) (5,678) (5,072) (4,429)	1,450 1,360 1,250 1,110	(5,488) (5,148) (4,731) (4,201)	1,140 1,090 1,015 950	(4,315) (4,126) (3,841) (3,596)	
	90 100 110 120	(27.4) (30.5) (33.5)	1,020 800 570	(3,861) (3,028) (2,158)	980 760 540	(3,709) (2,877) (2,044)	940 710 500	(3,558) (2,687) (1,893)	840 680 470	(3,179) (2,574) (1,779)	
	*Liter	(36.6) s per minut sy Contrac		(1,041) Bureau.	245	(927)	240	(908)	240	(908)	
							91.5				

9 m	n		4	(` ∩	nt	in	110	d)				ENCE 420
am	<u>P</u>		-		20	11 (uc	u)				
able	3.	Le	eng	th d	of S	Stee	el P	ipe	(ft)	Equ	Jiva	lent	to
			-						• •				
			ung	ys	and	JV	aive	es (1 ap	le z	:U-D	, re:	XL)
nath of	ctool	nine	in f		~~ .								
ingth Of	steel	pipe	, 111	eel, e	quiva	lient	to ntti	ngs ai	nd val	ves			
	_					Non	ninal siz	e (in.)					
Item	1	$1\frac{1}{4}$	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3	4	5	6	8	10	12	
												14	
elbow	2.8	3.7	4.3	5.5	6.4	8.2	11.0	13.5	16.0	21.0	26.0		
elbow	2.8 1.3	3.7 1.7	4.3 2.0	5.5 2.6	6.4 3.0	8.2 3.8	11.0 5.0	13.5 6.2	16.0 7.5	21.0 10.0	26.0 13.0	32.0	
elbow , side	1.3	1.7	2.0	2.6	3.0	3.8	5.0	6.2	7.5	10.0	13.0	32.0	
elbow				2.6		3.8						32.0	
elbow , side outlet	1.3	1.7	2.0	2.6	3.0	3.8 17.0	5.0 22.0	6.2 27.5	7.5 33.0	10.0 43.5	13.0 55.0	32.0 15.0 66.0	
elbow e, side outlet se return	1.3 5.6	1.7 7.5	2.0 9.1	2.6 12.0	3.0 13.5	3.8	5.0	6.2 27.5 31.0	7.5 33.0 37.0	10.0 43.5 49.0	13.0 55.0 62.0	32.0 15.0 66.0 73.0	
elbow e, side putlet se return pend	1.3 5.6 6.3	1.7 7.5 8.4	2.0 9.1 10.2	2.6 12.0 13.0	3.0 13.5 15.0	3.8 17.0 18.5 1.7	5.0 22.0 24.0 2.5	6.2 27.5 31.0 3.0	7.5 33.0 37.0 3.5	10.0 43.5 49.0 4.5	13.0 55.0 62.0 5.7	32.0 15.0 66.0 73.0 6.8	
elbow e, side putlet se return end e valve	1.3 5.6 6.3 0.6	1.7 7.5 8.4 0.8	2.0 9.1 10.2 0.9	2.6 12.0 13.0 1.2	3.0 13.5 15.0 1.4	3.8 17.0 18.5	5.0 22.0 24.0	6.2 27.5 31.0	7.5 33.0 37.0	10.0 43.5 49.0	13.0 55.0 62.0	32.0 15.0 66.0 73.0	
2	able	able 3.	able 3. Le Fil	able 3. Leng Fittin ngth of steel pipe, in f	able 3. Length of steel pipe, in feet, e	able 3. Length of S Fittings and ngth of steel pipe, in feet, equiva	able 3. Length of Stee Fittings and V ngth of steel pipe, in feet, equivalent Non	able 3. Length of Steel P Fittings and Valve ngth of steel pipe, in feet, equivalent to fitti Nominal siz	able 3. Length of Steel Pipe Fittings and Valves (ngth of steel pipe, in feet, equivalent to fittings an Nominal size (in.)	able 3. Length of Steel Pipe (ft) Fittings and Valves (Tab ngth of steel pipe, in feet, equivalent to fittings and val Nominal size (in.)	Fittings and Valves (Table 2 ngth of steel pipe, in feet, equivalent to fittings and valves Nominal size (in.)	able 3. Length of Steel Pipe (ft) Equival Fittings and Valves (Table 20-5 ngth of steel pipe, in feet, equivalent to fittings and valves	able 3. Length of Steel Pipe (ft) Equivalent Fittings and Valves (Table 20-5, Te: ngth of steel pipe, in feet, equivalent to fittings and valves

Mc Grawn

Example 4	(COI	n 1	ti	n	U	e (1))		-					
	Flow in U.S.					N	lominal	diamete	r of pipe	(in.)					
	(gpm)	12	1	1	14	11	2	21	3	4	5	6	8	10	12
	5 10 15 20	26.5 95.8	6.8 24.7 52.0 88.0	2.11 7.61 16.3 27.3	0.55 1.98 4.22 7.21	0.93 1.95 3.38	0.31 0.70 1.18	0.11 0.23 0.40	nitibor irranni 1777-52	fincio 1 Burr Model	nun Sum	sdin stors	al pa ntra	Alfug n Co	1 30K
Table 2 (Table 20-5 Text)	25 30 40 50	and big	10	41.6 57.8	10.8 15.3 26.0 39.0	5.07 7.15 12.2 18.5 39.0	1.75 2.45 4.29 6.43 13.6	0.60 0.84 1.4 2.2 4.6	0.25 0.35 0.59 0.9 2.0	0.22	0.16			uesit (solbi obii (hu)	aar ani ah
Water Friction Loss in Feet	75				2005	66.3	23.3	7.8	3.2	0.79	0.10	0.09		01	100
Per 100 ft for Clean Iron Steel Pipe.	100 125 150 175 200 225 250 250 275				240		35.1 49.4 66.3	11.8 16.6 22.0 28.0 35.3 43.0	4.9 6.8 9.1 11.6 14.5 17.7 21.2	1.2 1.7 2.2 2.9 3.5 4.4 5.2	0.27 0.42 0.57 0.77 0.96 1.2 1.5 1.8	0.09 0.18 0.21 0.31 0.40 0.48 0.60 0.75	0.15 0.18	999997	387888
	213 300 350 400 500 600 700 800 900	2= 1) 100 101	n R R	()	1001 544 144 125	ann) a to anni (St.a) Cap	1007 1111111 11111111 201011	(39) (39)-44 (24.7 33.8	6.1 8.0 10.4 15.6 22.4 30.4	2.0 2.7 3.5 5.3 6.2 9.9	0.84 0.91 1.4 2.2 3.1 4.1 5.2 6.6	0.21 0.27 0.35 0.53 0.74 1.0 1.3 1.6	0.18 0.25 0.34 0.44 0.54	0.08 0.10 0.14 0.18 0.22
	1,000 1,100 1,200 1,300 1,400		58 56 56 56 56 56 56 56 56 56 56 56 56 56	にため、 ため、 たの、 たの、 たの、	10761 1483 1027 1021 1031	(307.1) 2,706) 307.10 307.0 10060 10060			101 - 10 - 101 - 10 - 101 - 10 - 101 - 10 - 101 - 10			7.8 9.3 10.8 12.7 14.7	2.0 2.3 2.7 3.1 3.6	0.65 0.78 0.95 1.1 1.2	0.27 0.32 0.37 0.42 0.48
	1,500 2,000 3,000	23.4 27.4 30.5	18	6.6,0) 6.6,0)	085 1685 1000	(1231) (1453) (1473)	2100 2100 200	100		14 X	406,0 4065,0 4067,0	16.8	4.1 7.0	1.4 2.4 5.1	0.55 0.93 2.1
	4,000	on etc	1	Armp III			1						ates	-	3.5 5.5

Example 4					e	d)				ENCE 4
	Mi	nimum	capacit	ies for I	M-rated	i self-pri	ming c	entrifug	al pum	ps unspar a
		nutactu mp Bur		accorda	nce wit	h standa	rds of	the Cont	tractor	ium cupies
		74 V.	-		Model	90-M (6-ii	1.)	in in in	and di	
	in	tal head	10	(3.0)	Height 15	of pump a (4.6)	bove wat 20	er [ft (m)] (6.1)	25	(7.6)
		t (m)]	10	11 53	(Capacity [g	pm (l/mi	n)†]	(8)	noi
	25	(7.6)	1,500	(5,678)			an Quin	(a-i		1(0
	30 40	(9.1)	1,480	(5,602) (5,413)	1,280	(4,845) (4,656)	1,050 1,020	(3,974) (3,861)	790 780	(2,990) (2,952)
	50	(15.2)	1,350	(5,110)	1,160	(4,391)	970	(3,672)	735	(2,782)
T 11 5 (20 2)	60 70	(18.3) (21.3)	1,225	(4,637) (3,974)	1,050 900	(3,974) (3,407)	900 775	(3,407) (2,933)	690	(2,612)
Table 5 (20-2c)	80	(24.4)	800	(3,028)	680	(2,574)	600	(2,933) (2,271)	610 490	(2,309) (1,855)
	90 100	(27.4) (30.5)	450	(1,703) (379)	400 100	(1,514) (379)	365 100	(1,382)	300	(1,136)
	100	(30.3)	100	(379)	1000 0.50	10.11.000.000	224	(379)	100	(379)
		al head		_		125-M (8-i	-	Mindetait		
	in	luding	10	(3.0)	Height 15	of pump a (4.6)	bove wat 20	er [ft (m)] (6.1)	25	(7.6)
		iction t (m)]	-		0	apacity [g	pm (l/mi	n)†]	-	le la cal
	25	(7.6)	2,100	(7,949)	1,850	(7,002)	1,570	(5,943)	152.51	(7.6) -667
	30 40	(9.1) (12.2)	2,060 1,960	(7,797) (7,419)	1,820	(6,889)	1,560	(5,905)	1,200	(4,542)
	40 50	(12.2) (15.2)	1,960	(7,419) (6,813)	1,740	(6,586) (6,132)	1,520	(5,753) (5,488)	1,170	(4,429) (4,315)
	60	(18.3)	1,640	(6,207)	1,500	(5,678)	1,360	(5,148)	1,090	(4,126)
	70 80	(21.3) (24.4)	1,460 1,250	(5,526) (4,731)	1,340 1,170	(5,072) (4,429)	1,250 1,110	(4,731) (4,201)	1,015 950	(3,841) (3,596)
	90	(27.4)	1,020	(3,861)	980	(3,709)	940	(3,558)	840	(3,179)
	100	(30.5) (33.5)	800 570	(3,028) (2,158)	760 540	(2,877) (2,044)	710 500	(2,687) (1,893)	680 470	(2,574) (1,779)
	120	(36.6)	275	(1,041)	245	(927)	240	(908)	240	(908)
		rs per minu			1.1				normal pro-	v Centration Fue
	Cour	esy Contra	tors Pump	Bureau.						

CHAPTER 20. EQUIPMENT F	OR PUMPING	WA	TER							Slide No. 7
Example 4	(con	ti	nu	16	d))				ENCE 420 ©Assakl
	Minimum o pumps mar Contractor	ufac	tured in	accor						
	in the	1 150	1.158.0	Model	20-M (3-i)	1.)	a dia	u		
	Total head including	10	(3.0)	Height 15	of pump a (4.6)	bove w 20	ater [ft (m (6.1))] 25	(7.6)	
	friction [ft (m)]	Lin	(4.92)	c	Capacity [g	pm (1/1	min)†]	1221	() () () () () () ()	
	30 (9.1) 40 (12.2)	333 315	(1,260) (1,192)	280 270	(1,060) (1,022)	235 230	(890) (871)	165 162	(625) (613)	
	50 (15.2) 60 (18.3)	290 255	(1,098) (965)	255 235	(965) (890)	220 205	(833) (776)	154 143	(583) (541)	
Table 6 (20-2b)	70 (21.3)	212	(802)	209	(791)	184	(696)	130	(492)	
	80 (24.4) 90 (27.4)	165 116	(625) (439)	165 116	(625) (439)	157 116	(594) (439)	114 94	(432)	
	100 (30.5)	60	(227)	60	(439) (227)	60	(439)	60	(356) (227)	
				Model	40-M (4-ii	1.)	fider 125-	6		
	Total head including	10					ater [ft (m			
	friction	10	(3.0)	15	(4.6)	20	(6.1)	25	(7.6)	
	[ft (m)]	and b	distant da	C	Capacity [g	pm (l/r	nin)*]		1000	
	25 (7.6) 30 (9.1)	667 660	(2,525)	e76	(2176)	475	(1 70.0)	765	(1.244)	
	40 (12.2)	645	(2,498) (2,441)	575 565	(2,176) (2,139)	475 465	(1,798) (1,760)	355 350	(1,344) (1,325)	
	50 (15.2)	620	(2,347)	545	(2,063)	455	(1,722)	345	(1,306)	
	60 (18.3) 70 (21.3)	585 535	(2,214) (2,025)	510 475	(1,930) (1,798)	435 410	(1,647) (1.552)	335 315	(1,268) (1,192)	
	80 (24.4)	465	(1,760)	415	(1,798)	365	(1,352) (1,382)	280	(1,192) (976)	
	90 (27.4)	375	(1,419)	325	(1,230)	300	(1,136)	220	(833)	
	100 (30.5) 110 (33.5)	250 65	(946) (246)	215 60	(815) (227)	195 50	(738) (189)	145 40	(549) (151)	
	[†] Liters per minut Courtesy Contrac	e.	e prisedite e			lining:		10 ART	enuit quart en	
			np Bureau.					>	amili quart an	

200	CHAPTER 20. EQUIPMENT FOR PUMPING WATER Slide No. 73
N. 93	Example 5 (continued)
	From Table 3 (Table 20-5 Text) for 4-in pipe:
	Length of pipe: = 600 ft
	1 gate valves: 1 X 2.5 = 2.5 ft
	Total equivalent length of pipe = 602.5 ft
	From Table 2 (Table 20-4, Text) the friction loss per 100 ft of
	4-in pipe will be 4.40 ft
	From Table 4 (Table 20-6, Text) the friction loss per 100 ft of
	6-in smooth rubber hose will be 0.49 ft
	Total Head = Lift Head + Head lost in Friction (Pipe) + Head lost in Friction (Hose) = $(10) + \left(\frac{602.5}{100} \times 4.4\right) + \left(\frac{300}{100} \times 0.49\right) = 38 \text{ ft}$

<u>Example 5 (c</u>				11	lt	u	J		-					
	Flow in U.S.				-	Actual i	inside d (iı	iameter o n.)	of hose	. 201	logig R	60 A		
	(gpm)	-	1	1	11	11	2	21/2	3	4	5	6	8	
	5	21.4	8.9	2.2	0.74	0.3					as ha	Æ		10000
	10 15	76.8	31.8 68.5	7.8 16.8	2.64 5.7	1.0 2.3	0.2 0.5		34	10 100	iomp			
	20 25			28.7 43.2	9.6 14.7	3.9 6.0	0.9 1.4	0.32 0.51		do mu	iread based			
Table 4 (Table 20-6, Text)	30 35			61.2 80.5	20.7 27.6	8.5 11.2	2.0	0.70	0.3 0.4					
Water Friction Loss, in Feet Per	40 50	Direction			35.0 52.7	14.3 21.8	3.5 5.2	1.2 1.8	0.5	didin.	The c			
100 ft of Smooth Bore Hose.	60 70				73.5	30.2 40.4	7.3 9.8	2.5 3.3	1.0 1.3					
	80 90					52.0 64.2	12.6	4.3 5.3	1.7	0.5				
	100 125	16-9 010 per	a constant	enguing		77.4	18.9 28.6	6.5 9.8	2.6 4.0	0.6				
	150 175	nadi s	is mo	in. pip	of the 6	nan lu	40.7 53.4	13.8 18.1	5.6 7.4	1.3 1.8	5	6	8	
	200 250	meete	to a	4120 p	ipe call	ed a	68.5	23.4 35.0	9.6 14.8	2.3 3.5	0.8	0.32	inthe	
	300 350	nis, ai lo pri	canne	cied u	one pro	mene Opvin	eador syste	49.0	20.3 27.0	4.9 6.6	1.7 2.3	0.49	No.	
	400 450	ng bad Ng bad	hennik hennik ndi anj	inidat inidat	erteznic avice x4 tdsytgo	gian po gian po	nacing. Estiqu Shbatt	ndi to di Fatirat baxani	indust indust indust	8.4 10.5	2.9 3.6	1.1 1.4	0.28 0.35	
	500 1,000	il heata Situ iba	obuige instation	ian oli s dibuti	ilwoolla spilletaa	d doardi Evittina	nteq d a pote	tiney-in te prese	antowie 1. styre	12.7	4.3 15.6	1.7 6.4	0.43	

Example 5 (cor	iti	nı	160	d)					
	M	inimum iming ce	capaci ntrifu	ties for gal pum	MT-ra ps ma	ated soli	red in	accord	ance	sadities f integra
	wi	with standards of the Contractors Pump Bureau Model 18-MT (3-in.)								
		Total head including friction [ft (m)]		H (3.0)		f pump ab (4.6)	ove wat 20	ter [ft (m)] (6.1)	25	(7.6)
				Capacity [gpm (l/min) [†]]					-	
Table 7 (Table 20-3a, Text)	2 3 4 5 6 7 7 8 9	$\begin{array}{cccc} 0 & (9.1) \\ 0 & (12.2) \\ 0 & (15.2) \\ 0 & (18.3) \\ 0 & (21.3) \\ 0 & (24.4) \end{array}$	310 305 300 275 215 170 87 25	(1173) (1154) (1136) (1041) (814) (644) (329) (95)	265 265 265 260 215 170 87 25	(1003) (1003) (1003) (984) (814) (644) (329) (95)	200 200 200 200 170 87 25	(757) (757) (757) (757) (644) (329) (95)	115 110 105 100 100 87 25	(435) (416) (397) (379) (379) (329) (329) (95)
	-	0 (27.4)	23	()		3-MT (4-ir	(22)	M-17 Tobol	Mar La	
	ī	Total head including friction		Height of pump above water [ft (m)] 10 (3.0) 15 (4.6) 20 (6.1) 25						
				(3.0)			20 (6.1)		25	(7.6)
	-	[ft (m)]	valve	£3.5 G		pacity [g]			240	(000)
	4	0 (15.2)	550 540 500 450	(2,082) (2,044) (1,893) (1,703)	460 455 430 395	(1,741) (1,722) (1,628) (1,495)	350 350 340 320	(1,325) (1,325) (1,287) (1,211)	240 240 230 220	(908) (908) (871) (833)
	7	0 (21.3) 0 (24.4)	370 275	(1,401) (1,041)	360 275	(1,363) (1,041)	300 260	(1,136) (984)	210 180	(795) (681)
	9 10		190 100	(719) (379)	190 100	(719) (379)	190 100	(719) (379)	150 100	(568) (379)

