



The crane is the primary machine used for the vertical movement of construction materials.



- Cranes are a broad class of construction equipment used to hoist and place loads.
- Each type of crane is designed and manufactured to work economically in a specific site situation.



#### **CRANES**

- The full revolving superstructure of this type of unit is mounted on a pair of continuous parallel crawler tracks.
- Many manufacturers have different option packages available which permit the configuration of the crane to a particular application, standard lift, tower unit, or duty cycle.
- Units in the low to riddle range of lift capacity have good lifting characteristics and are capable of duty oyde work such as handling a concrete bucket.









### CRAWLER CRANES Slide No. 9 ENCE 420 ©Assakkaf

- Machines of 100-ton capacity and above are built for lift capability and do not have the heavier components required for duty-cycle
  - heavier components required for duty-cycle work.
- The universal machines incorporate heavier frames, have heavy duty or multiple clutches and brakes, and have more powerful swing systems. These designs allow for quick changing of drum laggings which vary the torque/speed ratio of cables to the application.

#### **CRAWLER CRANES**

- The crawlers provide the crane with travel capability around the job site.
- The distance between crawler tracks affects stability and lift capacity.
- To be transported between projects, the crawler crane must be transported by truck, rail, or barge.

## CRAWLER CRANES Slide No. 11 CRAWLER CRANES

\*\*As the size of the crane increases, the time and cost to dismantle, load, investigate haul routes, and reassemble the crane increases. Transporting the largest machines can require 15 or more truck trailer units.

#### **CRAWLER CRANES**

- The crawlers usually have lower initial cost per rated lift capability, but movement between jobs is more expensive.
- Crawler-type machines should be considered for projects requiring long-duration usage at a single site.

## CHAPTER 17. CRANES Slide No. 13 ENCE 420 © Assakkaf HYDRAULIC TRUCK CRANES

- The hydraulic truck crane has a selfcontained boom.
- Most units can travel on the public highways between projects under their own power with a minimum of dismantling. Once the crane is leveled at the new work site, it is ready to work without setup delays.



# HYDRAULIC TRUCK CRANES # If a job requires crane utilization for a few hours to a couple of days a

- from the first consideration for a few hours to a couple of days a hydraulic truck crane should be given first consideration because of its case of movement and setup.
- The hydraulic multisection telescoping boom is a permanent part of the full revolving superstructure. In this case the superstructure is mounted on a multiaxle truck/carrier.

### HYDRAULIC TRUCK

#### **CRANES**

- There are three common power and control arrangements for hydraulic truck cranes:
  - A single engine as both the truck and crane power source, with a single dual position cab used both for driving the truck and operating the crane.
  - 2. A single engine in the carrier but with both truck and crane operating cabs.
  - 3. Separate power units for the truck and the superstructure. This arrangement is standard for the larger capacity units.

## CHAPTER 17. CRANES Slide No. 17 ENCE 420 ©Assalkal CRANES CRANES

Hydraulic truck crane units have extendable outriggers for stability. In fact, many units cannot be operated safely with a full reach of boom unless the outriggers are fully extended and the machine raised so that the tires are clear of the ground.

## HYDRAULIC TRUCK CRANES

\*\*Remember: All mobile cranes are stability-sensitive machines. Rated loads are based on ideal conditions, a level machine, calm air, and no dynamic effects.

# CHAPTER 17. CRANES Slide No. 19 ENCE 420 ©Assakkaf CRANES CRANES

- #As with the hydraulic truck crane a full revolving superstructure is mounted on a multiaxle truck/carrier. The advantage of this machine is the lattice-boom.
- A lattice-boom is cable-suspended, and therefore acts as a compression member, not a bending member like the telescoping, hydraulic boom.





#### CRANES

The disadvantage of these units is the time and effort required disassembling them for transport. In the case of the larger units it may be necessary to remove the entire superstructure. Additionally a second crane is often required for this task. Some newer models are designed so that the machine can separate itself without the aid of another crane.

## CHAPTER 17. CRANES Slide No. 23 ROUGH-TERRAIN TRUCK CRANES

- These cranes are mounted on two-axle carriers.
- The operator's cab may be mounted in the upper works allowing the operator to swing with the load.
- On many models the cab is located on the carrier. This is a simpler design because controls do not have to be routed across the turntable. In turn these units have a lower cost.

#### ROUGH-TERRAIN TRUCK CRANES

The units are equipped with unusually large wheels in order to improve maneuverability at the job site. Most units can travel on the highway but have maximum speeds of only about 30 mph. In the case of long moves between projects they should be transported on low-bed trailers.

## CHAPTER 17. CRANES Slide No. 25 ENCE 420 CASSARKIAF CRANES CRANES

- Many units now have joy stick controls. A joy stick allows the operator to manipulate four functions simultaneously.
- The most common models are in the 18-50-ton capacity range and typically are employed as utility machines. They are primarily lift machines but are capable of light, intermittent duty-cycle work.

### ALL-TERRAIN TRUCK

#### **CRANES**

- The all-terrain crane is designed with an undercarriage that is capable of long-distance highway travel.
- All-terrain truck carrier has four wheel-drive and four wheel-steer, large tires, and high ground clearance.

CHAPTER 17. CRANES

Slide No. 27

ENCE 420 ©Assakk

## ALL-TERRAIN TRUCK CRANES

- They have dual cabs, a lower cab for fast highway travel, and a superstructure cab which has both drive and crane controls.
- The machine can be used for limited pick-and-carry work.

Slide No. 29

#### ALL-TERRAIN TRUCK **CRANES**

By combining job-site mobility and transit capability, these machines are very good when multiple lifts are required at scattered project sites or at multiple work locations on a single project.

### ALL-TERRAIN TRUCK CRANES

Because all-terrain truck is a combination of two features it has a higher cost than an equivalent capacity hydraulic truck crane or a rough-terrain crane.

#### **HEAVY LIFT CRANES**

- Heavy lift cranes are machines that provide lift capacities in the 600 through 2,000 short-ton range.
- Heavy lift cranes consist of a boom and counterweight each mounted on independent crawlers that are coupled by a stinger. This configuration utilizes a vertical strut and inclined mast to decrease compressive forces in the boom.







#### TOWER CRANES

These are cranes that provide a high-lifting height with good working radius, and take up limited space.

## TOWER CRANES

Slide No. 35

ENCE 420 ©Assakkaf

- The three common configurations are:
  - (1) a special vertical boom arrangement on a mobile crane,
  - (2) a mobile crane superstructure mounted atop a tower, or
  - (3) a vertical tower (European type) with a jib and operator's cab atop.





Slide No. 38

**TOWER CRANES** 

Some tower cranes have fixed towers and a swing circle mounted at the top; these are referred to as the fixed tower type.

Others, the slewing tower type have the swing circle located at the base, and both the tower and jib assembly rotate relative to the base.

### TOWER CRANES

Slide No. 39

ENCE 420 ©Assakka

Tower cranes are usually the machines of choice when:

- 1. Site conditions are restrictive.
- 2. Lift height and reach are extreme.
- 3. There is no need for mobility.

#### **SUITABILITY**

#### **BUILDING PROJECTS:**

- Low rise structures short cycle times
- High rise structures long cycle times
- High speed/high volume operations (concrete placement)
- Site conditions (position, locations)
- Vertical reach requirements

**CHAPTER 17. CRANES** 

Slide No. 41

#### **SUITABILITY**

#### **INDUSTRIAL PROJECTS:**

- Very precise (one time hoists)
- Heavy loads (possibly dual hoists)
- Working around fixed objects
- Site conditions (position, locations)
- Vertical reach requirements

#### **SUITABILITY**

#### **HEAVY PROJECTS:**

- Very precise (one time hoists)
- Heavy loads (possibly dual hoists)
- High speed/high volume operations (concrete placement)
- Multiple work locations
- Site conditions (position, locations)
- Vertical reach requirements



| CHAPTER 17. CRANES               | Slide No. 44  ENCE 420 ©Assakkaf |
|----------------------------------|----------------------------------|
| SAFETY                           | 2.162 120 0.133444411            |
|                                  |                                  |
| Crane fatality data              | :                                |
| •Energized power lines           | <b>50%</b>                       |
| • Overturning                    | 19%                              |
| <ul> <li>Load dropped</li> </ul> | 14%                              |
| Boom collapsed                   | 12%                              |
| • Two-block                      | 5%                               |
|                                  |                                  |
|                                  |                                  |

| CHAPTER 17. CRANES                 | Slide No. 45      |
|------------------------------------|-------------------|
| SAFETY                             | LIVE 720 WASSARAI |
|                                    |                   |
|                                    | ,                 |
| <b>Crane</b> Accident              | <b>S</b> ::       |
| •Overturning                       | 61.0%             |
|                                    | 01.0 / 0          |
| <ul> <li>Overload</li> </ul>       | 12.5%             |
| • Rigging                          | 12.5%             |
|                                    |                   |
| <ul> <li>Road accidents</li> </ul> | 10.0%             |
|                                    |                   |
|                                    |                   |
| es.<br>See                         |                   |





CHAPTER 17. CRANES Slide No. 48

ENCE 420 © Assakkat

#### HEIGHT OF REACH REQUIRED

- **✓** Height load is to be lifted
- **✓** Height of the load
- ✓ Sling height
- ✓ Hook block height
- ✓ Size of the load











Slide No. 54

ENCE 420 ©Assakka

#### RATED LOADS

- The rated load for a crane as published by the manufacturer is based on ideal conditions.
- A partial safety factor in respect to tipping is introduced by the Power Crane and Shovel Association (PCSA) rating standards, which state that the rated load of a lifting crane shall not exceed the following percentages of tipping loads at specified radii.
  - 1. Crawler-mounted machines, 75%
  - 2. Rubber-tire-mounted machines 85%
  - 3. Machines on outriggers, 85%



In addition to PCSA there are other groups that recommend rating criteria. The Construction Safety Association of Ontario recommends that for rubber-tire-mounted machines, on rubber a factor of 0.75 should be utilized.

Slide No. 56

ENCE 420 ©Assakk

#### RATED LOADS

- Load capacity will vary depending on the quadrant position of the boom with respect to the machine's undercarriage.
- In the case of crawler cranes the three quadrants which should be considered are:
  - 1. Over the side
  - 2. Over the drive end of the tracks
  - 3. Over the idler end of the tracks



#### RATED LOADS

- In the case of wheel mounted cranes the quadrants of consideration will vary with the configuration of the outrigger locations. If a machine has only four outriggers, two on each side, one located forward and one to the rear, the quadrants are usually defined by imaginary lines running from the superstructure center of rotation through the position of the outrigger support. In such a case the three quadrants to consider are:
  - 1. Over the side
  - 2. Over the rear (of the carrier)
  - 3. Over the front (of the carrier)



#### Example 1

Can the tower crane, whose load chart is given in Table 1(Table 14.3 of Textbook), lift a 15,000-lb load at a radius of 142 ft? The crane has a L7 jib and a two-part line hoist. The slings that will be used for the pick weigh 400 lb. Assume 5% margin be applied to computed weight.

Weight of Load = 15,000 lb

Weight of slings = 400 lb

Total Weight = 15,000 + 400 = 15,400 lb

Required Capacity = 15,400 X 1.05 = 16,170 lb

From Table 1, the maximum capacity at a 142-ft radius is 16,400 lb

16,400 lb > 16,170 lb

Therefore, the crane can safely make the lift

## Example 1 (cont'd)

Slide No. 61

ENCE 420 ©Assakkaf

Table 1. (Text 14.3) Lifting Capacities (lb) for a Tower Crane

| Jib model                 | L1          | L2           | L3           | L4             | L5         | L6        | L7      | Hool  |
|---------------------------|-------------|--------------|--------------|----------------|------------|-----------|---------|-------|
| Maximum hook reach        | 104'-0"     | 123'-0"      | 142'-0"      | 161'-0"        | 180′-0″    | 199'-0"   | 218'-0" | read  |
| crane wan lau it          | 27,600      | 27,600       | 27,600       | 27,600         | 27,600     | 27,600    | 27,600  | 10'-3 |
| Radius Capacity           | 27,600      | 27,600       | 27,600       | 27,600         | 27,600     | 27,600    | 27,600  | 88'-  |
| (ft) (fb):                | 27,600      | 27,600       | 27,600       | 27,600         | 27,600     | 27,600    | 25,800  | 94'-  |
| deated as for cables      | 27,600      | 27,600       | 27,600       | 27,600         | 27,600     | 25,800    | 24,200  | 101/4 |
| and shoot property        | 27,600      | 27,600       | 27,600       | 27,600         | 26,800     | 24,900    | 23,400  | 104'4 |
| Proposition is larger     | vottori se  | 27,600       | 27,600       | 27,600         | 25,200     | 23,600    | 22,200  | 109'- |
| 76.900                    | ing.        | 27,600       | 27,600       | 25,600         | 23,300     | 21,800    | 20,500  | 117'- |
| vd batatoth assetted      | NA 91 01    | 27,000       | 27,000       | 25,100         | 22,800     | 21,300    | 20,100  | 120'- |
| or budgealic cranes       | strument    | 26,300       | 26,300       | 24,300         | 22,200     | 20,700    | 19,500  | 123'- |
| Lifting capacities in     | oriof state | odr by o     | 24,800       | 22,800         | 20,800     | 19,300    | 18,300  | 130'- |
| pounds, two-part line     | 11 21 1901  | to esing     | 22,400       | 20,700         | 18,700     | 17,400    | 16,400  | 142'- |
| 2.41 (00 =                |             | 116          | lidedso      | 19,500         | 17,600     | 16,300    | 15,400  | 150'- |
| I Special of parish trees | on 75% of   | anning beats | 12000        | 18,800         | 16,800     | 15,700    | 14,800  | 155'- |
| Jointe Maninume Engine    | AND CALL    |              | 14. A. A. 14 | 17,900         | 16,200     | 15,100    | 14,200  | 161'- |
|                           | 100         |              | CATARAGA     | -              | 15,200     | 14,200    | 13,300  | 170′- |
| maximum reach of-         | namivo      | onero r      | ing rowe     | imila e        | 14,200     | 13,200    | 12,400  | 180%  |
| ight such that diste      | nding he    | drecesta     | nangitai     | npve a         | raine car  | 12,300    | 11,600  | 190'- |
| SHOWED PLANTS             | ( SOO 7)    | 數別 問題        | to Root      | Liguro http:// | JEGER      | 11,700    | 10,800  | 1995  |
| ion concerning Yall?      | Interna     | (sidered.    | ed is co     | ga Riod        | tod ward   | taler a g | 10,200  | 210'- |
| n in Table 7-4.           | AOCH STA    | TOLUME       | Ballitable   | MODIFICAL SIDE | I-despit 9 | troswr    | 9,700   | 218'- |

#### Example 2

Determine the minimum boom length that will permit the crawler crane to lift a load which is 34 ft high to a position 114 ft above the surface on which the crane is operating. The length of the block, hook, and slings that are required to attach the hoist rope to the load is 26 ft. The location of the project will require the crane to pick up the load from a truck at a distance of 70 ft from the center of rotation of the crane. If the block, hook, and slings weigh 5,000 lb, determine the maximum net weight of the load that can be hoisted.

The operating radius = 70 ft

Total height of boom point = 114 + 34 + 26 = 174 ft

From Figure 1 (Figure 14.11 of Textbook), for a radius of 70 ft, the height of of the boom point is 178 ft for 180-ft boom, which is high enough. From Table 2 (Table 14.1 in Textbook),

for 180-ft boom and 70-ft radius, Maximum total load = 47,600 lb

Maximum Safe Weight = 47,600 - 5,000 = 42,600 lb

#### CHAPTER 17. CRANES Slide No. 63

#### Example 2 (cont'd)

Figure 1. (Text 14.11) Working Ranges for a 200-ton Crawler Crane (Manitowoc Eng. Co)



#### Example 2 (cont'd)

Table 2. (Text 14.1) Lifting Capacities (lb) for 200-ton Crawler Crane with 180 ft of Boom

| adius<br>(ft) | Capacity (lb) | Radius<br>(ft) | Capacity<br>(lb) | Radius<br>(ft) | Capacity<br>(lb) |
|---------------|---------------|----------------|------------------|----------------|------------------|
| 32            | 146,300       | 80             | 39,200           | 130            | 17,900           |
| 36            | 122,900       | 85             | 35,800           | 135            | 16,700           |
| 40            | 105,500       | 90             | 32,800           | 140            | 15,500           |
| 45            | 89,200        | 95             | 30,200           | 145            | 14,500           |
| 50            | 76,900        | 100            | 27,900           | 150            | 13,600           |
| 55            | 67,200        | 105            | 25,800           | 155            | 12,700           |
| 60            | 59,400        | 110            | 23,900           | 160            | 11,800           |
| 65            | 53,000        | 115            | 22,200           | 165            | 11,100           |
| 70            | 47,600        | 120            | 20,600           | 170            | 10,300           |
| 75            | 43,100        | 125            | 19,200           | 175            | 9,600            |

<sup>†</sup> Specified capacities based on 75% of tipping loads.

Source: Manitowoc Engineering Co.