CHAPTER 17. CRANES

By Dr. Ibrahim Assakkaf
ENCE 420 – Construction Equipment and Methods
Spring 2003
Department of Civil and Environmental Engineering
University of Maryland, College Park
The crane is the primary machine used for the vertical movement of construction materials.
Cranes are a broad class of construction equipment used to hoist and place loads. Each type of crane is designed and manufactured to work economically in a specific site situation.

The most common types are:
1. Crawler
2. Hydraulic truck
3. Lattice-boom truck
4. Rough-terrain
5. All-terrain
6. Heavy lift
7. Modified cranes for heavy lift
8. Tower
CRANES

- The *full revolving superstructure* of this type of unit is mounted on a pair of continuous parallel crawler tracks.
- Many manufacturers have different option packages available which permit the configuration of the crane to a particular application, standard lift, tower unit, or duty cycle.
- Units in the low-to-middle range of lift capacity have good lifting characteristics and are capable of duty-cycle work such as handling a concrete bucket.

CRAWLER CRANES
• Machines of 100-ton capacity and above are built for lift capability and do not have the heavier components required for duty-cycle work.

• The universal machines incorporate heavier frames, have heavy duty or multiple clutches and brakes, and have more powerful swing systems. These designs allow for quick changing of drum laggings which vary the torque/speed ratio of cables to the application.
CRAWLER CRANES

- The crawlers provide the crane with travel capability around the job site.
- The distance between crawler tracks affects stability and lift capacity.
- To be transported between projects, the crawler crane must be transported by truck, rail, or barge.

CRAWLER CRANES

- As the size of the crane increases, the time and cost to dismantle, load, investigate haul routes, and reassemble the crane increases. Transporting the largest machines can require 15 or more truck trailer units.
CHAPTER 17. CRANES

CRAWLER CRANES

- The crawlers usually have lower initial cost per rated lift capability, but movement between jobs is more expensive.
- Crawler-type machines should be considered for projects requiring long-duration usage at a single site.

CHAPTER 17. CRANES

HYDRAULIC TRUCK CRANES

- The hydraulic truck crane has a self-contained boom.
- Most units can travel on the public highways between projects under their own power with a minimum of dismantling. Once the crane is leveled at the new work site, it is ready to work without setup delays.
If a job requires crane utilization for a few hours to a couple of days a hydraulic truck crane should be given first consideration because of its case of movement and setup.

The hydraulic multisection telescoping boom is a permanent part of the full revolving superstructure. In this case the superstructure is mounted on a multiaxle truck/carrier.
There are three common power and control arrangements for hydraulic truck cranes:

1. A single engine as both the truck and crane power source, with a single dual-position cab used both for driving the truck and operating the crane.
2. A single engine in the carrier but with both truck and crane operating cabs.
3. Separate power units for the truck and the superstructure. This arrangement is standard for the larger capacity units.

Hydraulic truck crane units have extendable outriggers for stability. In fact, many units cannot be operated safely with a full reach of boom unless the outriggers are fully extended and the machine raised so that the tires are clear of the ground.
HYDRAULIC TRUCK CRANES

Remember: All mobile cranes are stability-sensitive machines. Rated loads are based on ideal conditions, a level machine, calm air, and no dynamic effects.

LATTICE-BOOM TRUCK CRANES

As with the hydraulic truck crane a full revolving superstructure is mounted on a multiaxle truck/carrier. The advantage of this machine is the lattice-boom. A lattice-boom is cable-suspended, and therefore acts as a compression member, not a bending member like the telescoping, hydraulic boom.
The lattice-boom structure is lightweight. The reduction in boom weight means additional lift capacity as the machine predominantly handles hoist load and less weight of boom. The lattice-boom does take longer to assemble. The lightweight boom will give a less expensive lattice-boom machine the same hoisting capacity as a larger hydraulic unit.
LATTICE-BOOM TRUCK CRANES

The disadvantage of these units is the time and effort required disassembling them for transport. In the case of the larger units it may be necessary to remove the entire superstructure. Additionally a second crane is often required for this task. Some newer models are designed so that the machine can separate itself without the aid of another crane.

ROUGH-TERRAIN TRUCK CRANES

These cranes are mounted on two-axle carriers.

The operator's cab may be mounted in the upper works allowing the operator to swing with the load.

On many models the cab is located on the carrier. This is a simpler design because controls do not have to be routed across the turntable. In turn these units have a lower cost.
ROUGH-TERRAIN TRUCK CRANES

The units are equipped with unusually large wheels in order to improve maneuverability at the job site. Most units can travel on the highway but have maximum speeds of only about 30 mph. In the case of long moves between projects they should be transported on low-bed trailers.

ROUGH-TERRAIN TRUCK CRANES

Many units now have joy stick controls. A joy stick allows the operator to manipulate four functions simultaneously.

The most common models are in the 18-50-ton capacity range and typically are employed as utility machines. They are primarily lift machines but are capable of light, intermittent duty-cycle work.
ALL-TERRAIN TRUCK CRANES

- The all-terrain crane is designed with an undercarriage that is capable of long-distance highway travel.
- All-terrain truck carrier has four wheel-drive and four wheel-steer, large tires, and high ground clearance.

ALL-TERRAIN TRUCK CRANES

- They have dual cabs, a lower cab for fast highway travel, and a superstructure cab which has both drive and crane controls.
- The machine can be used for limited pick-and-carry work.
ALL-TERRAIN TRUCK CRANES

By combining job-site mobility and transit capability, these machines are very good when multiple lifts are required at scattered project sites or at multiple work locations on a single project.

ALL-TERRAIN TRUCK CRANES

Because all-terrain truck is a combination of two features it has a higher cost than an equivalent capacity hydraulic truck crane or a rough-terrain crane.
HEAVY LIFT CRANES

- Heavy lift cranes are machines that provide lift capacities in the 600 through 2,000 short-ton range.
- Heavy lift cranes consist of a boom and counterweight each mounted on independent crawlers that are coupled by a stinger. This configuration utilizes a vertical strut and inclined mast to decrease compressive forces in the boom.
CHAPTER 17. CRANES

Components of Heavy Lift Crane

STABILITY

Counterweight and superstructure

Load distance

Short distance
These are cranes that provide a high-lifting height with good working radius, and take up limited space.

The three common configurations are:

1. a special vertical boom arrangement on a mobile crane,
2. a mobile crane superstructure mounted atop a tower, or
3. a vertical tower (European type) with a jib and operator's cab atop.
TOWER CRANES

Components of Tower Crane
Some tower cranes have fixed towers and a swing circle mounted at the top; these are referred to as the fixed tower type.

Others, the slewing tower type have the swing circle located at the base, and both the tower and jib assembly rotate relative to the base.

Tower cranes are usually the machines of choice when:

1. Site conditions are restrictive.
2. Lift height and reach are extreme.
3. There is no need for mobility.
SUITABILITY

BUILDING PROJECTS:
- Low rise structures - short cycle times
- High rise structures - long cycle times
- High speed/high volume operations (concrete placement)
- Site conditions (position, locations)
- Vertical reach requirements

SUITABILITY

INDUSTRIAL PROJECTS:
- Very precise (one time hoists)
- Heavy loads (possibly dual hoists)
- Working around fixed objects
- Site conditions (position, locations)
- Vertical reach requirements
CHAPTER 17. CRANES

SUITABILITY

HEAVY PROJECTS:
• Very precise (one time hoists)
• Heavy loads (possibly dual hoists)
• High speed/high volume operations (concrete placement)
• Multiple work locations
• Site conditions (position, locations)
• Vertical reach requirements

SUITABILITY

HEAVY PROJECTS:
• Heavy loads (possibly dual hoists)
Crane fatality data:

- Energized power lines 50%
- Overturning 19%
- Load dropped 14%
- Boom collapsed 12%
- Two-block 5%

Crane Accidents:

- Overturning 61.0%
- Overload 12.5%
- Rigging 12.5%
- Road accidents 10.0%
Crane Accidents:

• Overturning 61.0%

SELECTION FACTORS

- Height of reach required
- Working envelope
- Maximum load
- Time
- Duty cycle
HEIGHT OF REACH REQUIRED

- Height load is to be lifted
- Height of the load
- Sling height
- Hook block height
- Size of the load

CONSIDER ALL HEIGHTS

- Hook Block
- Sling Height
- Load Height
- Height Load is to be Lifted
CHAPTER 17. CRANES

HEIGHT OF LOAD

SLING HEIGHT
CHAPTER 17. CRANES

Ence 420 © Assakkaf

Slide No. 52

Hook Block Height

CHAPTER 17. CRANES

Size of the Load

Clearance between the Boom and the Load

Clearance
RATED LOADS

- The rated load for a crane as published by the manufacturer is based on ideal conditions.
- A partial safety factor in respect to tipping is introduced by the Power Crane and Shovel Association (PCSA) rating standards, which state that the rated load of a lifting crane shall not exceed the following percentages of tipping loads at specified radii.
 1. Crawler-mounted machines, 75%
 2. Rubber-tire-mounted machines 85%
 3. Machines on outriggers, 85%

In addition to PCSA there are other groups that recommend rating criteria. The Construction Safety Association of Ontario recommends that for rubber-tire-mounted machines, on rubber a factor of 0.75 should be utilized.
RATED LOADS

- Load capacity will vary depending on the quadrant position of the boom with respect to the machine's undercarriage.
- In the case of crawler cranes, the three quadrants which should be considered are:
 1. Over the side
 2. Over the drive end of the tracks
 3. Over the idler end of the tracks

Crawler-crane quadrants are usually defined by the longitudinal centerline of the machine's crawlers. The area between the centerlines of the two crawlers is considered over the end and the area outside the crawler centerlines is considered over the side.
RATED LOADS

- In the case of wheel-mounted cranes, the quadrants of consideration will vary with the configuration of the outrigger locations. If a machine has only four outriggers, two on each side, one located forward and one to the rear, the quadrants are usually defined by imaginary lines running from the superstructure center of rotation through the position of the outrigger support. In such a case, the three quadrants to consider are:
 1. Over the side
 2. Over the rear (of the carrier)
 3. Over the front (of the carrier)

RATED LOADS

DRAGLINE, CLAMSHELL, MAGNET CRANES

- Large brakes/clutches for continuous operation
- Patented thermal cooling range on brakes/clutches for smooth duty-cycle performance
- Heavy-duty, quality-built machinery deck and travel machinery
- Simple, accessible, serviceable

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CLAMSHELL</th>
<th>DRAGLINE</th>
<th>MAGNET CRANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>MAXIMUM</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td></td>
<td>RATING</td>
<td>BOOM</td>
<td>RATING</td>
</tr>
<tr>
<td>5220</td>
<td>16,000 lb</td>
<td>100 ft</td>
<td>14,000 lb</td>
</tr>
<tr>
<td>7225</td>
<td>22,750 lb</td>
<td>120 ft</td>
<td>19,500 lb</td>
</tr>
<tr>
<td>9225</td>
<td>30,000 lb</td>
<td>140 ft</td>
<td>30,000 lb</td>
</tr>
<tr>
<td>12220</td>
<td>55,000 lb</td>
<td>200 ft</td>
<td>55,000 lb</td>
</tr>
</tbody>
</table>

METRIC

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CLAMSHELL</th>
<th>DRAGLINE</th>
<th>MAGNET CRANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMUM</td>
<td>MAXIMUM</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td></td>
<td>RATING</td>
<td>BOOM</td>
<td>RATING</td>
</tr>
<tr>
<td>5220</td>
<td>7,220 kg</td>
<td>33.5 m</td>
<td>6,350 kg</td>
</tr>
<tr>
<td>7225</td>
<td>10,319 kg</td>
<td>36.5 m</td>
<td>8,845 kg</td>
</tr>
<tr>
<td>9225</td>
<td>13,610 kg</td>
<td>42.6 m</td>
<td>13,610 kg</td>
</tr>
<tr>
<td>12220</td>
<td>24,020 kg</td>
<td>60.9 m</td>
<td>24,948 kg</td>
</tr>
</tbody>
</table>

NOTE: Refer to specifications for boom length and capacity combination.
Example 1

Can the tower crane, whose load chart is given in Table 1 (Table 14.3 of Textbook), lift a 15,000-lb load at a radius of 142 ft? The crane has a L7 jib and a two-part line hoist. The slings that will be used for the pick weigh 400 lb. Assume 5% margin be applied to computed weight.

Weight of Load = 15,000 lb
Weight of slings = 400 lb
Total Weight = 15,000 + 400 = 15,400 lb
Required Capacity = 15,400 X 1.05 = 16,170 lb
From Table 1, the maximum capacity at a 142-ft radius is 16,400 lb

16,400 lb > 16,170 lb
Therefore, the crane can safely make the lift.

Example 1 (cont’d)

Table 1. (Text 14.3) Lifting Capacities (lb) for a Tower Crane

<table>
<thead>
<tr>
<th>Jib length</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>80'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
<tr>
<td>90'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
<tr>
<td>100'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
<tr>
<td>110'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
<tr>
<td>120'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
<tr>
<td>130'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
<tr>
<td>140'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
<tr>
<td>150'-0"</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>27,600</td>
<td>10,750</td>
</tr>
</tbody>
</table>

Lifting capacities, in pounds, for a tower crane
Example 2

Determine the minimum boom length that will permit the crawler crane to lift a load which is 34 ft high to a position 114 ft above the surface on which the crane is operating. The length of the block, hook, and slings that are required to attach the hoist rope to the load is 26 ft. The location of the project will require the crane to pick up the load from a truck at a distance of 70 ft from the center of rotation of the crane. If the block, hook, and slings weigh 5,000 lb, determine the maximum net weight of the load that can be hoisted.

The operating radius = 70 ft
Total height of boom point = 114 + 34 + 26 = 174 ft
From Figure 1 (Figure 14.11 of Textbook), for a radius of 70 ft, the height of the boom point is 178 ft for 180-ft boom, which is high enough.
From Table 2 (Table 14.1 in Textbook), for 180-ft boom and 70-ft radius, Maximum total load = 47,600 lb
Hence
Maximum Safe Weight = 47,600 - 5,000 = 42,600 lb

Example 2 (cont’d)

Figure 1. (Text 14.11) Working Ranges for a 200-ton Crawler Crane (Manitowoc Eng. Co)
Example 2 (cont’d)

Table 2. (Text 14.1) Lifting Capacities (lb) for 200-ton Crawler Crane with 180 ft of Boom

<table>
<thead>
<tr>
<th>Radius (ft)</th>
<th>Capacity (lb)</th>
<th>Radius (ft)</th>
<th>Capacity (lb)</th>
<th>Radius (ft)</th>
<th>Capacity (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>146,600</td>
<td>80</td>
<td>39,200</td>
<td>130</td>
<td>17,700</td>
</tr>
<tr>
<td>30</td>
<td>122,900</td>
<td>90</td>
<td>32,800</td>
<td>140</td>
<td>15,500</td>
</tr>
<tr>
<td>40</td>
<td>105,500</td>
<td>95</td>
<td>30,200</td>
<td>145</td>
<td>14,500</td>
</tr>
<tr>
<td>50</td>
<td>76,900</td>
<td>100</td>
<td>27,900</td>
<td>150</td>
<td>13,600</td>
</tr>
<tr>
<td>60</td>
<td>67,200</td>
<td>105</td>
<td>25,800</td>
<td>155</td>
<td>12,700</td>
</tr>
<tr>
<td>70</td>
<td>59,400</td>
<td>110</td>
<td>23,900</td>
<td>160</td>
<td>11,800</td>
</tr>
<tr>
<td>80</td>
<td>53,000</td>
<td>115</td>
<td>22,200</td>
<td>165</td>
<td>11,100</td>
</tr>
<tr>
<td>90</td>
<td>47,600</td>
<td>120</td>
<td>20,600</td>
<td>170</td>
<td>10,300</td>
</tr>
<tr>
<td>100</td>
<td>43,100</td>
<td>125</td>
<td>18,200</td>
<td>175</td>
<td>9,600</td>
</tr>
</tbody>
</table>

*Specified capacities based on 75% of tipping load.
Source: Mammoet Engineering Co.