









| and the                    |              |                                                    |                                        |                                                 |                                              |                                              |                                              |                                              |  |
|----------------------------|--------------|----------------------------------------------------|----------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--|
|                            | Size<br>hole | Hole<br>pattern                                    | Area<br>per hole                       | Volume of<br>rock per<br>lin. ft of             | Pounds of<br>explosive<br>per lin. ft        | Pounds<br>cu<br>%                            | of explo<br>yd of ro<br>of hole fi           | osive per<br>ck'<br>illed                    |  |
|                            | (in.)        | (ft)                                               | (sq ft)                                | hole <sup>†</sup> (cu yd)                       | of hole <sup>+</sup>                         | 100                                          | 75                                           | 50                                           |  |
|                            | 1 2          | 4×4<br>5×5<br>6×6<br>7×7                           | 16<br>25<br>36<br>49                   | 0.59<br>0.93<br>1.33<br>1.81                    | 0.9<br>0.9<br>0.9<br>0.9                     | 1.52<br>0.97<br>0.68<br>0.50                 | 1.14<br>0.73<br>0.51<br>0.38                 | 0.76<br>0.48<br>0.34<br>0.25                 |  |
| Table 1 (Table 12-4, Text) | 2            | 5×5<br>6×6<br>7×7<br>8×8                           | 25<br>36<br>49<br>64                   | 0.93<br>1.33<br>1.81<br>2.37                    | 1.7<br>1.7<br>1.7<br>1.7                     | 1.83<br>1.28<br>0.94<br>0.72                 | 1.37<br>0.96<br>0.71<br>0.54                 | 0.92<br>0.64<br>0.47<br>0.36                 |  |
| Drilling and Blasting Data | 3            | 7×7<br>8×8<br>9×9<br>10×10                         | 49<br>64<br>81<br>100<br>121           | 1.81<br>2.37<br>3.00<br>3.70<br>4.48            | 3.9<br>3.9<br>3.9<br>3.9<br>3.9              | 2.15<br>1.65<br>1.30<br>1.05<br>0.87         | 1.61<br>1.24<br>0.97<br>0.79<br>0.65         | 1.08<br>0.83<br>0.65<br>0.53<br>0.44         |  |
|                            | 4            | 8×8<br>10×10<br>12×12<br>14×14<br>16×16            | 64<br>100<br>144<br>196<br>256         | 2.37<br>3.70<br>5.30<br>7.25<br>9.50            | 7.5<br>7.5<br>7.5<br>7.5<br>7.5              | 3.16<br>2.03<br>1.42<br>1.03<br>0.79         | 2.37<br>1.52<br>1.06<br>0.77<br>0.59         | 1.58<br>1.02<br>0.71<br>0.52<br>0.40         |  |
|                            | 5            | 12×12<br>14×14<br>16×16<br>18×18<br>20×20          | 144<br>196<br>256<br>324<br>400        | 5.30<br>7.25<br>9.50<br>12.00<br>14.85          | 10.9<br>10.9<br>10.9<br>10.9<br>10.9         | 2.05<br>1.50<br>1.15<br>0.91<br>0.73         | 1.54<br>1.13<br>0.86<br>0.68<br>0.55         | 1.02<br>0.75<br>0.58<br>0.46<br>0.37         |  |
|                            | 6            | 12×12<br>14×14<br>16×16<br>18×18<br>20×20<br>24×24 | 144<br>196<br>256<br>324<br>400<br>576 | 5.30<br>7.25<br>9.50<br>12.00<br>14.85<br>21.35 | 15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6 | 2.94<br>2.05<br>1.64<br>1.30<br>1.05<br>0.73 | 2.20<br>1.54<br>1.23<br>0.97<br>0.79<br>0.55 | 1.47<br>1.02<br>0.82<br>0.65<br>0.53<br>0.37 |  |
|                            | 9            | 20×20<br>24×24<br>28×28<br>30×30<br>32×32          | 400<br>576<br>784<br>900<br>1.024      | 14.85<br>21.35<br>29.00<br>33.30<br>37.90       | 35.0<br>35.0<br>35.0<br>35.0<br>35.0<br>35.0 | 2.36<br>1.64<br>1.21<br>1.05<br>0.92         | 1.77<br>1.23<br>0.91<br>0.79<br>0.69         | 1.18<br>0.82<br>0.61<br>0.53<br>0.46         |  |













| CHAPTER 12b. DRILLING RO    | CK AND EA                | RTH                 |                  |                  |                      | Slide No.         |  |
|-----------------------------|--------------------------|---------------------|------------------|------------------|----------------------|-------------------|--|
|                             |                          |                     |                  | TO               |                      | ENCE 420 ©Assa    |  |
| 🗂 RATES OF                  | + Dk                     | <b>2    </b> _      |                  |                  | RO                   | <b>ICK</b>        |  |
|                             |                          |                     |                  |                  |                      |                   |  |
|                             |                          |                     |                  |                  |                      |                   |  |
|                             | Metamorphi               | c rock: Avera       | no lifo in foo   | t for drill hit  | e and steel          |                   |  |
|                             |                          |                     |                  |                  |                      |                   |  |
|                             |                          |                     | Madium           | Modium           | Madium               |                   |  |
|                             |                          | High                | silica           | silica           | silica               | Low               |  |
|                             | Drill                    | $L\Lambda < 35$     | (Schist)         | (Schist)         | LA < 25<br>(Metala-) | silica<br>LA > 45 |  |
| Table 3 (Table 12-6b, Text) | bits<br>(in.) Type       | (Quartzite)<br>(ft) | (Gneiss)<br>(ft) | (Gneiss)<br>(ft) | (tite)<br>(ft)       | (Marble)<br>(ft)  |  |
|                             | 3 В                      | 200                 | 1.200            | 1.500            | 800                  | 1 300             |  |
|                             | 3 STD                    | NR                  | 800              | 900              | 400                  | 850               |  |
|                             | 35 310                   | NR                  | 1.300            | 1 1.700          | 850                  | 1,600             |  |
|                             | 3 B                      | 450                 | 3.000            | 3,500            | 2.000                | 2.100<br>3.300    |  |
|                             | 4 B                      | 600                 | 3,300            | 3.800            | 2,300                | 3,700             |  |
|                             | Rotary                   |                     |                  |                  | ļ                    |                   |  |
|                             | bits<br>5 ST             | NP                  | NIP              | ND               | ND                   |                   |  |
|                             | 5. ST                    | NR                  | NR               | NR               | NR                   | 1.200             |  |
|                             | 6 ST                     | NR                  | NR               | NR               | NR                   | 2,000             |  |
|                             | 6 j ST                   | NR                  | NR               | 750              | NR                   | 4.500             |  |
|                             | 6 <sup>3</sup> CB        | NR                  | 3,700            | 4,200            | 1.200                | 9.000             |  |
|                             | 7' CB                    | NR                  | 5,500            | 6,500            | 2,200                | 13.000            |  |
|                             | Down hole                |                     |                  |                  |                      |                   |  |
|                             | 6 <u>1</u> B             | 500                 | 2.700            | 3,200            | 1,500                | 4,500             |  |
|                             | Drill                    |                     |                  |                  |                      |                   |  |
|                             | steel                    |                     |                  |                  |                      |                   |  |
|                             | Shanks                   | 5.000               | 5,700            | 6,200            | 5,550                | 5,800             |  |
|                             | Couplings<br>Steel 10 ft | 900                 | 1,000            | 1,200            | 750                  | 800               |  |
|                             | Steel 12 ft              | 3.000               | 3,300            | 2,300            | 2.800                | 3,000             |  |
|                             | 5 in. 20 ft              | 50,000              | 90,000           | 100.000          | 85,000               | 175,000           |  |
|                             | B · button, CB           | carbide button, HD  | heavy duty, ST = | steel tooth.     |                      |                   |  |
|                             | STD = standard, N        | R not recommende    | d.               |                  |                      |                   |  |







## DRILLING PRODUCTION ESTIMATE

To begin a drilling production estimate it is first necessary to make an assumption about the type of equipment that will be used. Tables 12-5 & 12-6 provide information to guide that first decision.











| P.A.        | CHAPTER 12b. DRILLING ROCK | AND EARTH | Slide No. 94       |
|-------------|----------------------------|-----------|--------------------|
| ALL OF      |                            | SS        | ENCE 420 ©Assakkaf |
|             |                            |           |                    |
|             |                            |           |                    |
|             |                            |           | Scratch Test       |
|             | Diamond                    | 10.0      |                    |
|             |                            | 50        | V                  |
|             | Schist                     | 5.0       | Knife              |
|             | Granite                    | 4.0       | Knife              |
|             |                            | • •       | ~                  |
|             | Limestone                  | 3.0       | Copper coin        |
|             | Potash                     | 2.0       | Fingernail         |
|             |                            |           | 1 mgci nun         |
|             | Gypsum                     | 1.5       | Fingernail         |
|             | ~ -                        |           | <u> </u>           |
| Mc<br>Grawn |                            |           |                    |

| Contra Co | March C | HAPTER 12b. DRILLING ROCK AN | D EARTH           | Slide No. 95 |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|-------------------|--------------|--|--|--|--|--|--|
| - M.<br>9440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                              |                   |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |                              |                   |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F       | Iardness aff                 | ects drilling sne | hed          |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                              | cets at ming spe  |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | HARDNESS                     | DRILLING SPEED    | 1            |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 1-2                          | FAST              |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 3-4                          | FAST - MEDIUM     |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 5                            | MEDIUM            |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 6-7                          | SLOW - MEDIUM     |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 8-9                          | SLOW              |              |  |  |  |  |  |  |
| Mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 1                            | 1                 | ]            |  |  |  |  |  |  |













| Contraction of the second | CHAPTER 12b. DRILLING ROCK AND EARTH | Slide No. <b>102</b> |
|---------------------------|--------------------------------------|----------------------|
| -AL                       | PERCUSSION DR                        | <b>ILLING</b>        |
|                           | Hardnes                              | S                    |
|                           | Quartzite 7.0                        |                      |
|                           | Trap Rock 6.0                        |                      |
| - Com                     | Schist 5.0                           |                      |
|                           | Granite 4.0                          |                      |
|                           | Dolomite 3.5                         |                      |
|                           | Limestone 3.0                        |                      |
|                           | Galena 2.5                           |                      |
| Mc                        |                                      |                      |













| CHAP | TER 12b. DR                                                    | ILLING ROCK A                                                    | ND EART                  | Η                        |                            |                                              |                                            | Slide No. 1    |
|------|----------------------------------------------------------------|------------------------------------------------------------------|--------------------------|--------------------------|----------------------------|----------------------------------------------|--------------------------------------------|----------------|
| GL   | JIDE                                                           | LINES                                                            | FO                       | R E                      | STI                        | MA                                           |                                            | ENCE 420 ©Assa |
| DR   | RILLI                                                          | NG PF                                                            | ROE                      | DUC                      | TIC                        | DN                                           |                                            |                |
|      | T 11 0                                                         | D '11' F                                                         | . 1                      | (; D                     |                            |                                              | 10 C T                                     |                |
|      | Table 2.                                                       | Drilling F                                                       | roduc                    | tion Ra                  | ates (1                    | able                                         | 12-5, 1                                    | ext)           |
|      |                                                                |                                                                  | Di                       | rect<br>ation rate       | Estir<br>produc<br>good co | nated <sup>†</sup><br>tion rate<br>onditions | orand kecim<br>Is Finia work<br>The planta |                |
|      | Bit<br>size                                                    | Drill type<br>Compressed air                                     | Granite<br>(ft/hr)       | Dolomite<br>(ft/hr)      | Granite<br>(ft/hr)         | Dolomite<br>(ft/hr)                          | nina willi<br>India                        |                |
|      | 3 <sup>1</sup> / <sub>2</sub><br>3 <sup>1</sup> / <sub>2</sub> | Rotary-percussion<br>750 cfm @ 100 psi<br>900 cfm @ 100 psi      | 65<br>85                 | 125<br>175               | 35<br>40                   | 55<br>65                                     | lace or onu<br>(these hiph                 |                |
|      | $4\frac{1}{2}$<br>$6\frac{1}{5}$                               | Downhole drill<br>600 cfm @ 250 psi<br>900 cfm @ 350 psi         | .`<br>70<br>100          | 110<br>185               | 45<br>65                   | 75<br>90                                     | ne errect of<br>y compress<br>r diesel for |                |
|      | 6 <sup>1</sup> / <sub>4</sub><br>6 <sup>3</sup> / <sub>4</sub> | Rotary<br>30,000 pulldown<br>40,000 pulldown                     | • NR<br>75               | 100<br>120               | NR<br>30                   | 65<br>75                                     | stens and s<br>increasing                  |                |
|      | 7 <sup>1</sup> / <sub>8</sub><br>NR-Not<br>*Estima             | 50,000 pulldown<br>recommended.<br>ted productions are for ideal | 95<br>conditions, but th | 150<br>ney do account fo | 45<br>r all delays inclu   | 85<br>uding blasting.                        | It has to                                  |                |
|      |                                                                |                                                                  |                          |                          | bollor (* 184              | ven 10                                       |                                            |                |
|      |                                                                |                                                                  |                          |                          |                            |                                              |                                            |                |









| E.         | CHAPTER 12b. DRILLING R     | OCK AND EARTH | Slide No. 114 |  |  |  |  |  |  |
|------------|-----------------------------|---------------|---------------|--|--|--|--|--|--|
| . <b>A</b> | STEP 4 CHANGE STEEL         |               |               |  |  |  |  |  |  |
|            | Steel, approximate weights: |               |               |  |  |  |  |  |  |
|            | SIZE                        | LENGTH        | WEIGHT        |  |  |  |  |  |  |
| 10.58      | INCHES                      | FEET          | POUNDS        |  |  |  |  |  |  |
|            | 1.5                         | 10            | 53            |  |  |  |  |  |  |
|            | 1.5                         | 12            | 64            |  |  |  |  |  |  |
|            | 1.75                        | 10            | 60            |  |  |  |  |  |  |
|            | 1.75                        | 12            | 71            |  |  |  |  |  |  |
| Mc         |                             |               |               |  |  |  |  |  |  |





















## **STEP 8 CHANGE BIT**

The time allowance for replacement is a factor of both the actual *time to remove* and replace, and the *frequency* of such changes. Table 12- 6 provides frequency information.

| K AND EART                                                                                                                                                      | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | Slide No. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S FO                                                                                                                                                            | R E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STIN                                                                                                                                                                                                                                                                                                                                                                                           | <b>MA</b> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΓΙΝ                                                    | ENCE 420 ©Assakl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PROD                                                                                                                                                            | UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TIO                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Igneous rock                                                                                                                                                    | : Average life                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e, in feet, for dril<br>I                                                                                                                                                                                                                                                                                                                                                                      | l bits and ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | el                                                     | the new sector of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill<br>bits<br>(in.) Type                                                                                                                                     | High<br>silica<br>LA < 20<br>(Rhyolite)<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | High<br>silica<br>20 < LA < 50<br>(Granite)<br>(ft)                                                                                                                                                                                                                                                                                                                                            | Medium<br>silica<br>LA < 50<br>(Granite)<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low<br>silica<br>LA < 20<br>(Basalt)<br>(ft)           | Low<br>silica<br>LA > 20<br>(Diabase)<br>(ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{cccc} 3 & B \\ 3 & STD \\ 3\frac{1}{2} & STD \\ 3\frac{1}{2} & HD \\ 3\frac{1}{2} & B \\ 4 & B \\ \\ Rotary \end{array}$                         | 250<br>NR<br>NR<br>200<br>550<br>750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500<br>NR<br>NR<br>575<br>1,200<br>1,500                                                                                                                                                                                                                                                                                                                                                       | 750<br>NR<br>1,000<br>2,500<br>2,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 750<br>NR<br>750<br>1,400<br>2,700<br>3,000            | 1,000<br>750<br>1,500<br>2,000<br>3,200<br>3,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| bits<br>5 ST<br>$5\frac{2}{3}$ ST<br>$6\frac{1}{4}$ ST<br>$6\frac{1}{4}$ ST<br>$6\frac{1}{4}$ ST<br>$6\frac{1}{4}$ CB<br>$7\frac{2}{8}$ CB<br>Down hole<br>bits | NR<br>NR<br>NR<br>NR<br>NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NR<br>NR<br>NR<br>NR<br>1,700                                                                                                                                                                                                                                                                                                                                                                  | NR<br>NR<br>NR<br>1,500<br>2,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NR<br>NR<br>NR<br>2,000<br>3,500                       | NR<br>NR<br>800<br>4.000<br>6,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6½ B<br>Drill<br>steel<br>Shanks<br>Couplings<br>Steel 10 ft<br>Steel 12 ft                                                                                     | 2,500<br>2,500<br>700<br>1,450<br>2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,000<br>4,500<br>700<br>1,500<br>2,600                                                                                                                                                                                                                                                                                                                                                        | 1,800<br>5,800<br>800<br>1,600<br>3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,200<br>5,850<br>950<br>1,650<br>3,500                | 3,000<br>6,000<br>1,100<br>2,200<br>5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                 | CANDEART<br>CSFO<br>PRODE<br>Igneous rock<br>Igneous | EK AND EARTH   S FOR E   PRODUC   Igneous rock: Average life   Drill bis fligh   (m) Type (Rhyolite) (R)   3 STD NR 3   3 STD NR 3 HD 200   3 B 750 Rotary 515 5 ST NR   5 ST NR 6 ST NR 700 Steel 10 ft 1,450 Steel | BAD EARTH   S FOR ESTIN   S FOR ESTIN   PODUCTIO   Income rock: Average life, in feet, for dril   Inflight drill dril dri | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | File AND EARTH   S FOR ESTIMATIN   PODUCTION   Incous rock: Average life, in feet, for drill bits and steel   Incous rock: Average life, in feet, for drill bits and steel   Incous rock: Average life, in feet, for drill bits and steel   Interview of the stand steel |





CHAPTER 12b. DRILLING ROCK AND EARTH

## **Example 1**

A project utilizing experienced drillers will require the drilling and blasting of high silica, fine-grained sandstone rock. From field drilling tests it was determined that a direct drilling rate of 120 ft per hour could be achieved with a 3 1/2 HD bit on a rotary percussion drill @ 100 psi. The drills to be used take 10-ft steel. The blasting pattern will be a 10 X 10-ft grid with 2 ft of sub-drilling required. On the average the specified finish grade is 16 ft below the existing ground surface. Determine the drilling production.

| Per s | CHAPTER 12b. DRILLING ROC | K AND EARTH     | Slide No. 129              |
|-------|---------------------------|-----------------|----------------------------|
| .A.   | Example 1 (               | cont'd)         | ENCE 420 ©Assakkaf         |
|       |                           |                 |                            |
|       | Using the format of       | Figure 4:       |                            |
|       | (1) Depth of hole         | (a) 16-ft pull  | (b) 18-ft drill (16 + 2)   |
|       | (2) Penetration           | 2.00 ft/min     | $(120 \text{ ft} \div 60)$ |
|       |                           |                 |                            |
|       | (3) Drilling Time:        | 9.00 min        | (18 ft ÷ 2 ft/min)         |
|       | (4) Change Steel:         | 0.00 min        | (d<20 ft)                  |
|       | (5) Blow Hole:            | 0.10 min        |                            |
|       | (6) Move to Next Hole     | 0.45 min        | (10 ft ÷ 0.25 mph)         |
|       | (7) Align Steel:          | 1.00 min        | · · · ·                    |
|       | (8) Change Bit:           | 0.08 min        | (4 X 18/850 )              |
|       | (9) Total Time            | 10.63 min       |                            |
|       | <u>Note: 850 wa</u>       | s obtained from | Table 5                    |
| 10    |                           |                 |                            |

| CHAPTER 12b. DRILLING ROCK  | AND EARTH                                         | 1                                                   |                                                            |                                                   |                                                        | Slide No. 13                                               |
|-----------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| Example 1 (c                | cont <sup>2</sup>                                 | 'd)                                                 |                                                            |                                                   |                                                        | ENCE 420 ©Assak                                            |
|                             | Sedimentary                                       | rock: Average                                       | life, in feet, fo                                          | r drill bits and                                  | l steel                                                |                                                            |
|                             |                                                   |                                                     |                                                            | Sedimentary                                       |                                                        | Charles -                                                  |
|                             | Drill<br>bits<br>(in.) Type                       | High<br>silica<br>fine grain<br>(Sandstone)<br>(ft) | Medium<br>silica<br>coarse<br>grain<br>(Sandstone)<br>(ft) | Low<br>silica<br>fine grain<br>(Dolomite)<br>(ft) | Low<br>silica<br>fine-med.<br>grain<br>(Shale)<br>(ft) | Low<br>silica<br>coarse<br>grain<br>(Conglomerate)<br>(ft) |
| Table 5 (Table 12-6c, Text) | 3 B<br>3 STD<br>3 <sup>1</sup> / <sub>2</sub> STD | 800<br>NR<br>NR                                     | 1,200<br>850<br>1,500                                      | 1,300<br>900<br>1,800                             | 2,000<br>1,500<br>3,000                                | 1,800<br>1,200<br>2,500                                    |
|                             | 31 HD                                             | 850                                                 | 2,000                                                      | 2,200                                             | 3,500                                                  | 3,000                                                      |
|                             | 312 B                                             | 2,000                                               | 3,100                                                      | 3,500                                             | 4,500                                                  | 4,000                                                      |
|                             | 4 B<br>Rotary<br>bits                             | 2,500                                               | 3,500                                                      | 2,000                                             | 5,000                                                  | 4,800                                                      |
|                             | 5 ST                                              | NR                                                  | 1,000                                                      | NR                                                | 8,000                                                  | 6,000                                                      |
|                             | 5 <sup>7</sup> / <sub>3</sub> ST                  | NR                                                  | 2,500                                                      | NR                                                | 15,000                                                 | 13,000                                                     |
|                             | $6\frac{1}{4}$ ST                                 | NR                                                  | 4,000                                                      | 4,000                                             | 18,000                                                 | 14,000                                                     |
|                             | 63 ST                                             | 500                                                 | 6,000                                                      | 8,000                                             | 20,000                                                 | 15,000                                                     |
|                             | 63 CB                                             | 2,000                                               | 8,000                                                      | 10,000                                            | 25,000                                                 | 20,000                                                     |
|                             | 7g CB<br>Down hole<br>bits                        | 3,000                                               | 10,000                                                     | 15,000                                            | 25,000                                                 | 20,000                                                     |
|                             | 6 <u>1</u> B                                      | 2,500                                               | 3,500                                                      | 5,500                                             | 7,500                                                  | 6,000                                                      |
|                             | Drill<br>steel                                    |                                                     |                                                            |                                                   |                                                        |                                                            |
|                             | Shanks                                            | 5,000                                               | 5,500                                                      | 6,000                                             | 7.000                                                  | 6.500                                                      |
|                             | Couplings                                         | 1,000                                               | 1,200                                                      | 1,500                                             | 2,000                                                  | 1,750                                                      |
|                             | Steel 10 ft<br>Steel 12 ft                        | 2,000                                               | 2,300                                                      | 2,500                                             | 4,000                                                  | 3,500                                                      |
|                             | 5 in. 20 ft                                       | 65,000                                              | 250.000                                                    | 0,000                                             | 7,500                                                  | 7,000                                                      |
|                             | B = button, CB = c<br>STD = standard, NF          | arbide button, HD =<br>R = not recommended          | heavy duty, ST = stee                                      | l tooth,                                          |                                                        |                                                            |

| and a state | CHAPTER 12b. DRILLING ROCK AND EARTH |             | Slide No. 131      |
|-------------|--------------------------------------|-------------|--------------------|
| 9. <b>A</b> | Example 1 (cont                      | 'd)         | ENCE 420 ©Assakkaf |
|             |                                      |             |                    |
|             |                                      |             |                    |
|             | (10) Operating Rate:                 | 1.69 ft/min | (18 ÷ 10.63)       |
|             | (11) Production Efficiency.:         | 50 min/hr   |                    |
|             | (12) Hourly Production               | 84.5 ft/hr  | (50 × 1.55)        |
|             |                                      |             |                    |
|             |                                      |             |                    |
| Mc          |                                      |             |                    |





