Solution to Homework Set \#4

CE 327 - Spring 2009
Assigned Mo, 4/20 Due Mo, 4/27

Problem 1

Textbook: 8.4 (condition 2 only)
Also, assume typical cycle element times as follows:
Load bucket 9 sec
Swing with Load 5 sec
Dump Load 3 sec
Return Swing 5 sec
Use Optimum height (depth) $=50 \%$ of maximum height.

Percent optimum height $=18 / 17.5 * 100=102.86 \%$
Height/Angle factor $($ Table 8-8) $=0.996$
Efficiency factor $=40 / 60=0.6667$
Production $=(859)(0.996)(0.6667)=570.38$ Icy $/ \mathrm{hr}$
Cost $=\$ 96 / 570.38=\$ 0.168 / \mathrm{yd}^{3}$

Problem 2

Textbook: 9.2

$$
\text { Total time }=\frac{2 \times 1,800 \mathrm{ft}}{88 \times 3.0 \mathrm{mph} \times 0.60}+\frac{3 \times 1,800 \mathrm{ft}}{88 \times 4.3 \mathrm{mph} \times 0.60}
$$

$$
=22.7 \mathrm{~min}+23.8 \mathrm{~min} \Rightarrow 46.5 \mathrm{~min}
$$

Problem 3

Textbook: 10.2
Gross vehicle weight: 70,000 lb
Grade resistance, plus 4\% = 4.0\%
Rolling resistance: $\quad \frac{90 \mathrm{lb} / \text { ton }}{20 \mathrm{lb} / \text { ton }}=4.5 \%$
Total resistance $=8.5 \%$
Required rimpull, $0.085 \times 70,000=5,950 \mathrm{lb}$
Using Figure $10-9$ go vertically up the $70,000 \mathrm{lb}$ vehicle weight ordinate and intersect the sloping line indicating a total resistance of 8.5%. Then go horizontally to the right into the adjacent figure to intersect the third gear curve.

From this intersection go vertically downward to an indicated maximum speed of 12.5 mph .

An alternate procedure is to go horizontally to the left from $5,950 \mathrm{lb}$ on the rimpull ordinate to intersect the curve for the third gear and again go vertically downward to a maximum speed of $\mathbf{1 2 . 5} \mathbf{~ m p h}$.

Problem 4

Textbook: 10.6
Rear-dump trucks used to haul poorly blasted rock. The performance chart shown in Fig. 10-9 is valid for these trucks.
Capacity: (1) 15 cu yd, net weight empty $44,000 \mathrm{lb}$; (2) 20 cu yd, net weight empty 50,000 lb
The shovel has a $3 ½$ cu-yd bucket and 26 sec cycle time. The haul road from the borrow site to the fill is 4 miles up a 2% grade. Rolling resistance of the haul road is 4%.

Step 1. Number of bucket loads.

The bucket fill factor for a shovel handling poorly blasted rock is $85-100 \%$, problem statement use 100%. The shovel bucket volume will be 3.5 lcy ($31 / 2 \times$ 1.0). The heaped capacities of the trucks are 15 and 20 lcy.

Balance Number of bucket loads $=\frac{15 \text { lcy }}{3.5 \text { lcy }}$
Balance number of bucket loads (15 cu-yd truck) $=4.3$
The actual number of bucket should be an integer number, therefore two cases should be investigated, either placing 4 or 5 bucket loads on the truck.
Balance Number of bucket loads $=\frac{20 \text { lcy }}{3.5 \text { lcy }}$
Balance number of bucket loads (20cu-yd truck) $=5.7$
The actual number of bucket should be an integer number, therefore two cases should be investigated, either placing 5 or 6 bucket loads on the truck.

Step 2. Load time. Check production based on possible situations, 4, 5 or 6bucket loads to fill the trucks.
Load time (4 buckets) $\quad 4 \times \frac{26 \mathrm{sec}}{60 \mathrm{sec} \text { per min }}=1.73 \mathrm{~min}$
Load volume (4 buckets) 4×3.5 lcy/bucket load $=14$ lcy
Load weight $\quad 14$ lcy $\times 2,600 \mathrm{lb}$ per lcy $=36,400 \mathrm{lb}$
Load time (5 buckets)

$$
5 \times \frac{26 \mathrm{sec}}{60 \mathrm{sec} \text { per } \min }=2.17 \mathrm{~min}
$$

Load volume (5 buckets) 15 cu-yd trk: equals truck capacity 15 lcy, excess spills off

20 cu-yd truck: 5×3.5 lcy/bucket load $=17.5$ lcy
Load weight, 15 cu-yd truck 15 lcy $\times 2,600 \mathrm{lb}$ per lcy $=39,000 \mathrm{lb}$

Load weight, 20 cu-yd truck
Load time (6 buckets)
Load volume (6 buckets)
Load weight, 20 cu-yd truck
17.5 lcy $\times 2,600 \mathrm{lb}$ per lcy $=45,500 \mathrm{lb}$ $6 \times \frac{26 \mathrm{sec}}{60 \mathrm{sec} \text { per min }}=2.60 \mathrm{~min}$ equals truck capacity 20 lcy, excess spills off. 20 lcy $\times 2,600 \mathrm{lb}$ per lcy $=52,000 \mathrm{lb}$

Step 3. Haul time.
Rolling resistance 4%, given
Grade resistance 2\%
Total resistance $\quad 6.0 \%(4.0 \%+2 \%)$

	$15 \mathrm{cu}-\mathbf{y d}$ truck		20 cu-yd truck	
	4 buckets	5 buckets	5 buckets	6 buckets
Empty trk net wt	$44,000 \mathrm{lb}$	$44,000 \mathrm{lb}$	$50,000 \mathrm{lb}$	$50,000 \mathrm{lb}$
Load weight	$36,400 \mathrm{lb}$	$39,000 \mathrm{lb}$	$45,500 \mathrm{lb}$	$52,000 \mathrm{lb}$
Gross Weight	$80,400 \mathrm{lb}$	$83,000 \mathrm{lb}$	$95,500 \mathrm{lb}$	$102,000 \mathrm{lb}$
Speed (Fig. 10-9)	12.5 mph	12.5 mph	12.5 mph	12.0 mph

Haul time (12.5 mph) $\frac{4 \text { miles } \times 5280 \mathrm{ft} / \mathrm{mile}}{88 \times 12.5 \mathrm{mph}}=19.2 \mathrm{~min}$
Haul time (12.0 mph) $\frac{4 \text { miles } \times 5280 \mathrm{ft} / \mathrm{mile}}{88 \times 12 \mathrm{mph}}=20.0 \mathrm{~min}$
Step 4. Return time.
Rolling resistance 4\%
Grade resistance -2\%
Total resistance $\quad 2 \%[4 \%+(-2 \%)]$
(1) $15 \mathrm{cu} y d$, net weight empty $44,000 \mathrm{lb}$
(2) 20 cu yd, net weight empty $50,000 \mathrm{lb}$

Speed (Fig. 10-9) 35 mph
Return time $\frac{4 \text { miles } \times 5280 \mathrm{ft} / \mathrm{mile}}{88 \times 35 \mathrm{mph}}=6.86 \mathrm{~min}$
Step 5. Dump time.
Expected dump time 1.5 min .
Step 6. Truck cycle time

	15 cu-yd truck		20 cu-yd truck	
	4 buckets	5 buckets	5 buckets	6 buckets
Load time	1.73 min	2.17 min	2.17 min	2.60 min
Haul time	19.20 min	19.20 min	19.20 min	20.00 min
Dump time	1.50 min	1.50 min	1.50 min	1.50 min
Return time	6.86 min	6.86 min	6.86 min	6.86 min
Truck cycle time	29.29 min	29.73 min	29.73 min	30.96 min

Step 7. Number of trucks required.

	15 cu-yd truck		20 cu-yd truck	
	4 buckets	5 buckets	5 buckets	6 buckets
Truck cycle time	29.29 min	29.73 min	29.73 min	30.96 min
Load time	1.73 min	2.17 min	2.17 min	2.60 min
Number of trucks	16.9	13.7	13.7	11.9

Step 8. Production.

	15 cu-yd truck		20 cu-yd truck	
	4 buckets	5 buckets	5 buckets	6 buckets
Truck cycle time	29.29 min	29.73 min	29.73 min	30.96 min
Load time	1.73 min	2.17 min	2.17 min	2.60 min
Number of trucks	16.9	13.7	13.7	11.9
Production 11 trks	315 lcy	333 lcy	388 lcy	426 lcy
Production 12 trks	344 lcy	363 lcy	424 lcy	461 lcy
Production 13 trks	372 lcy	394 lcy	459 lcy	461 lcy
Production 14 trks	401 lcy	415 lcy	484 lcy	461 lcy
Production 15 trks	430 lcy	415 lcy	484 lcy	461 lcy
Production 16 trks	459 lcy	415 lcy	484 lcy	461 lcy
Production 17 trks	485 lcy	415 lcy	484 lcy	461 lcy

Problem 5

Textbook: 10.7
Rear-dump trucks used to haul wet gravel. The performance chart shown in Fig. 10-9 is valid for these trucks.

Capacity: 14 cu yd, net weight empty $44,000 \mathrm{lb}$
The hoe has a 3 cu-yd bucket and 24 sec cycle time. The haul road from the pit to the plant is 2.5 miles up a 3% grade. Rolling resistance of the haul road is 3%.
Cost of hoe $\$ 97 / \mathrm{hr}$, trucks $\$ 49 / \mathrm{hr}$
Step 1. Number of bucket loads.
The bucket fill factor for the hoe is 105%, from the problem statement. The hoe bucket volume will be 3.15 lcy (3×1.05). The heaped capacity of the truck is 14 lcy.
Balance Number of bucket loads $\frac{14 \text { lcy }}{3.15 \text { lcy }}=4.4$

The actual number of bucket should be an integer number, therefore two cases should be investigated, either placing 4 or 5 bucket loads on the truck.
Step 2. Load time. Check production based on possible situations, 4, or 5-bucket loads to fill the trucks.

Load time (4 buckets)

$$
4 \times \frac{24 \mathrm{sec}}{60 \mathrm{sec} \text { per } \mathrm{min}}=1.6 \mathrm{~min}
$$

Load volume (4 buckets)
4×3.15 lcy/bucket load = 12.6 lcy
Load weight Table 4-1, wet gravel $2,980 \mathrm{lb}$ per lcy
Load weight $\quad 12.6$ lcy $\times 2,980 \mathrm{lb}$ per lcy $\quad=37,548 \mathrm{lb}$
Check load weight
$37,548 \mathrm{lb}<40,000 \mathrm{lb}$ OK
Load time (5 buckets)

$$
5 \times \frac{24 \mathrm{sec}}{60 \mathrm{sec} \text { per min }}=2.0 \mathrm{~min}
$$

Load volume (5 buckets) 14 cu-yd trk: equals truck capacity 14 lcy, excess spills off
Load weight, $\quad 14$ lcy $\times 2,980 \mathrm{lb}$ per lcy $=41,720 \mathrm{lb}$
Check load weight $\quad 41,720 \mathrm{lb}>40,000 \mathrm{lb}$; would over load the truck if 5
buckets used
Step 3. Haul time.
Rolling resistance 3%, given
Grade resistance 3\%

Total resistance $\quad 6.0 \%(3.0 \%+3 \%)$	

	$\mathbf{1 4}$ cu-yd truck
	4 buckets
Empty trk net wt	$36,860 \mathrm{lb}$
Load weight	$37,548 \mathrm{lb}$
Gross Weight	$74,408 \mathrm{lb}$
Speed (Fig. 10-9)	12.5 mph

Haul time (12.5 mph) $\quad \frac{2.5 \mathrm{miles} \times 5280 \mathrm{ft} / \mathrm{mile}}{88 \times 12.5 \mathrm{mph}}=12 \mathrm{~min}$
Step 4. Return time.
Rolling resistance 3\%
Grade resistance -3\%
Total resistance $0 \%[3 \%+(-3 \%)]$
Speed (Fig. 10-9) $\quad 35 \mathrm{mph}$
Return time $\frac{2.5 \text { miles } \times 5280 \mathrm{ft} / \mathrm{mile}}{88 \times 35 \mathrm{mph}}=4.29 \mathrm{~min}$

Step 5. Dump time.

Expected dump time 1.3 min .

Step 6. Truck cycle time

$$
14 \text { cu-yd truck }
$$

	4 buckets
Load time	1.60 min
Haul time	12.00 min
Dump time	1.30 min
Return time	4.29 min
Truck cycle time	19.19 min

Step 7. Number of trucks required.

	$\mathbf{1 4}$ cu-yd truck
	4 buckets
Truck cycle time	19.19 min
Load time	1.60 min
Number of trucks	12

Step 8. Production

	14 cu-yd truck
	4 buckets
Truck cycle time	19.19 min
Load time	1.60 min
Number of trucks	12
Production 12 trks	472 lcy
Cost hoe	$\$ 97$
Cost 12 trks	$\$ 588$
Total cost	$\$ 685$
Cost per lcy	$\$ 1.45$

