Solution to Homework Set #3 CE 327 - Spring 2009 Assigned Sa, 4/11 Due Sa, 4/18

Assigned 5a, 4/11 Due 5	a, 4/10	
Problem 1Textbook: 5.1Weight of tractor, 48,000 lb \Rightarrow 24 tonsTension in the cable, 4,680 lbGrade factor, 0.04		
Tension in cable	= 4,680 lb	
Deduct grade resistance, $0.04 \times 48,000$	= -1,920 lb	
Tension required to overcome rolling resistance	= 2,760 lb	
Rolling resistance: $\frac{2,760 \text{ lb}}{24 \text{ tons}} = 115 \text{ lb/tn}$		
Problem 2 Textbook: 5.3 Gross weight, 94,000 lb Speed, 12 mph: $\frac{12 \text{ miles}}{\text{hr}} \times \frac{5,280 \text{ ft}}{\text{mile}} \times \frac{\text{hr}}{60 \text{ min}} =$	1,056 ft per min	
Effect of grade,	$0.04 \times 94,000$ lb	= 3,760 lb
Decreased force required to move the load down	n grade, $0.04 \times 94,170$ lb	= 3,760 lb
Difference in	force resulting from grade	= 7,520 lb
Energy resulting from gain in force, 7,520 lb \times 1	1,056 = 7,941,120 ft lb pe	er min.

Equivalent gain in power: $\frac{7,941,120 \text{ ft} - \text{lb/min}}{33,000} = 241 \text{ hp}$

Problem 3

A tractor has a 360-hp engine under standard conditions. What is the power of the engine when it is operating at an altitude 6500 ft above sea level and at a temperature of 90° F?

*** SOLUTION ***

$$HPavailable = RatedHP\left(\frac{P_{act}}{P_{std}}\right)\sqrt{\frac{T_{std}}{T_{act}}} = 360hp\left(\frac{23.45}{29.92}\right)\sqrt{\frac{520^{\circ}R}{550^{\circ}R}} = 274.35hp$$

Problem 4

Textbook: 6.1

DOZER PRODUCTION

Step 1. Idea maximum production.

D6H with a 6S blade; 200 ft push distance.

From Fig. 6-12 ideal production is 210 lcy per hour

Step 2. Material-weight correction factor.

Bank weight for this project is given as 110 pcf; therefore

110 lb/cu ft \times 27 cu ft/cu yd = 2,970 lb/bcy

Soil Density correction: Table 4-1, 15%

$$\frac{2,970}{1.15} = 2,583 \text{ lb / lcy}$$

Standard condition is 2,300 lb/lcy

Material weight correction = $\frac{2,300 \text{ lb} / \text{lcy}}{2,583 \text{ lb} / \text{lcy}} = 0.89$

- Step 3. Determine the operator correction factor (see Table 6-2). Operator 0.75
- Step 4. Material-type correction factor. dry noncohesive silty sand (see Table 6-2).Material (type)0.80
- Step 5. Operating-technique correction factor. No special technique the factor is 1. Normal Dozing 1.00
- Step 6. Visibility correction factor. In the case of good visibility use 1. Visibility 1.00
- Step 7. Efficiency factor. See Table 6-2 or use the assumed number of operating minutes per hour divided by 60 minutes.Job Efficiency 0.83
- Step 8. Machine transmission factor. See Table 6-2.Transmission1.00
- Step 9. Blade adjustment factor. See note bottom Table 6-2. Blade 1.00
- Step 10. Grade correction factor. Uphill on a 2% grade (Table 6-2 continued). Grade 0.98
- Step 11. Determine the product of the correction factors. Product, correction factors = $0.89 \times 0.75 \times 0.80 \times 1.00 \times 1.00 \times 0.83 \times 1.00 \times 1.00 \times 0.98 = 0.43$

Step 12. Determine the dozer production.

Production = $210 \text{ lcy/hr} \times 0.43 = 90 \text{ lcy/hr}$

Step 13. Conversion to bcy.

$$\frac{90 \text{ lcy / hr}}{1.15} = 78 \text{ bcy / hr}$$

Step 14. Determine the total cost to operate the dozer.

Cost:	
0&0	\$54.00 per hour
<u>Operator ($\\$12.00 \times 1.35$)</u>	\$16.20
Total	\$70.20 per hour

Step 15. Determine the direct unit production cost.

Direct production cost = $\frac{\$70.20 \text{ per hour}}{78 \text{ bcy / hr}} = \0.900 per bcy

Problem 5

A 300-hp crawler tractor will be used to clear small trees and brush from a 15-acre site. By operating in the first gear, the tractor should be able to maintain a continuous forward speed of 1.2 mph. An angle-clearing blade will be used, and from past experience the average resulting clear width will be 10 ft. Assuming an efficiency of 50-min-hr, how long will take to knock down the vegetation?

*** SOLUTION ***

Using Eq. 6.8 of Textbook, we have

$$Pr oduction = \frac{width of cut (ft) \times speed (mph)}{10} = \frac{10(1.2)}{10} = 1.2 acre / hr$$

Time to knock down the vegetation = $\frac{Number of Acres}{Production} = \frac{15}{1.2} = 12.5 hours$

Problem 6

Textbook: 7.2

Using equation 7-2: Travel time per segment, min = $\frac{1,300 \text{ ft}}{88 \times 23 \text{ mph}} \Rightarrow 0.64 \text{ min}$

Problem 7

Textbook: 7.6

Solution next page

Step 1:

Empty weight (EVW)	Table 7-1	96,880 lb
Load volume:	0.90×31 cu yd = 27.9 lcy	
	swell factor cohesive $= 0.76$	
Load volume bank measure:	$27.9 \text{ lcy} \times 0.76 \times 1.1 = 23.3 \text{ bcy}$	
Weight of load:	23.3 bcy \times 2,900 lb per bcy =	67,570 lb
	Gross weight (GVW)	164,450 lb

		Step 2	Step 3	Step 4	Step 5	Step 6
	Distance	RR	GR	TR	Speed	time
	ft	%	%	%	mph	min
Haul (164,450 lb	200 (acc.)	3	5	8	5	0.45
or 83.16 tons)	400	3	5	8	11	0.41
	1,800	3	-2	1	34	0.60
	200 (dec.)	3	-4	-1	5	0.45
Return (96,880 lb	200 (acc.)	3	4	7	5	0.45
or 48.44 tons)	1,800	3	2	5	26	0.79
	400	3	-5	-2	33	0.14
	200 (dec.)	3	-5	-2	5	0.45

Step 6: Travel time	3.74 min
Step 7: Load time	0.80 min
Step 8: Dump time	0.37 min
Step 9: Turn time fill	0.21 min
Turn time cut	0.30 min
Step 10: Total cycle time scraper	5.42 min

Step 11:	$T_p = 1.4 (0.80) + 0.25 \Longrightarrow 1.3$	7 min
Step 12:	$N = \frac{5.42 \text{ min}}{1.37 \text{ min}} \Longrightarrow 3.96$	Use 4 scrapers

Step 13: 50 min per hr.

Step 14: Production

If 4 scrapers were used on the job production would be: Production pusher (controlling) = $\frac{50 \text{ min/hr}}{1.37 \text{ min}} \times 23.3 \text{ bcy} \Rightarrow 850 \text{ bcy/hr}$