Solution to Homework Set \#3

CE 327 - Spring 2009
Assigned Sa, 4/11 Due Sa, 4/18

Problem 1

Textbook: 5.1
Weight of tractor, $48,000 \mathrm{lb} \Rightarrow 24$ tons
Tension in the cable, 4,680 lb
Grade factor, 0.04
Tension in cable $=4,680 \mathrm{lb}$
Deduct grade resistance, $0.04 \times 48,000=-1,920 \mathrm{lb}$
Tension required to overcome rolling resistance $=2,760 \mathrm{lb}$

Rolling resistance: $\quad \frac{2,760 \mathrm{lb}}{24 \text { tons }}=\mathbf{1 1 5} \mathbf{~ l b} / \mathbf{t n}$

Problem 2

Textbook: 5.3
Gross weight, 94,000 lb
Speed, $12 \mathrm{mph}: \frac{12 \mathrm{miles}}{\mathrm{hr}} \times \frac{5,280 \mathrm{ft}}{\text { mile }} \times \frac{\mathrm{hr}}{60 \mathrm{~min}}=1,056 \mathrm{ft}$ per min
Effect of grade, $\quad 0.04 \times 94,000 \mathrm{lb}=3,760 \mathrm{lb}$
Decreased force required to move the load down grade, $0.04 \times 94,170 \mathrm{lb}=3,760 \mathrm{lb}$
Difference in force resulting from grade $=7,520 \mathrm{lb}$

Energy resulting from gain in force, $7,520 \mathrm{lb} \times 1,056=7,941,120 \mathrm{ft} \mathrm{lb}$ per min.
Equivalent gain in power: $\frac{7,941,120 \mathrm{ft}-\mathrm{lb} / \mathrm{min}}{33,000}=\mathbf{2 4 1} \mathbf{~ h p}$

Problem 3

A tractor has a 360-hp engine under standard conditions. What is the power of the engine when it is operating at an altitude 6500 ft above sea level and at a temperature of $90^{\circ} \mathrm{F}$?
*** SOLUTION ***
HPavailable $=$ RatedHP $\left(\frac{P_{\text {act }}}{P_{\text {std }}}\right) \sqrt{\frac{T_{\text {std }}}{T_{\text {act }}}}=360 \mathrm{hp}\left(\frac{23.45}{29.92}\right) \sqrt{\frac{520^{\circ} \mathrm{R}}{550^{\circ} R}}=274.35 \mathrm{hp}$

Problem 4

Textbook: 6.1

DOZER PRODUCTION

Step 1. Idea maximum production.
D6H with a 6S blade; 200 ft push distance.
From Fig. 6-12 ideal production is 210 lcy per hour
Step 2. Material-weight correction factor.
Bank weight for this project is given as 110 pcf ; therefore
$110 \mathrm{lb} / \mathrm{cu} \mathrm{ft} \times 27 \mathrm{cu} \mathrm{ft} / \mathrm{cu} y d=2,970 \mathrm{lb} / \mathrm{bcy}$
Soil Density correction: Table 4-1, 15\%

$$
\frac{2,970}{1.15}=2,583 \mathrm{lb} / \mathrm{lcy}
$$

Standard condition is 2,300 lb/lcy
Material weight correction $=\frac{2,300 \mathrm{lb} / \text { lcy }}{2,583 \mathrm{lb} / \text { lcy }}=0.89$
Step 3. Determine the operator correction factor (see Table 6-2).
Operator
0.75

Step 4. Material-type correction factor. dry noncohesive silty sand (see Table 6-2).
Material (type) 0.80
Step 5. Operating-technique correction factor. No special technique the factor is 1.
Normal Dozing $\quad 1.00$
Step 6. Visibility correction factor. In the case of good visibility use 1.
Visibility $\quad 1.00$

Step 7. Efficiency factor. See Table 6-2 or use the assumed number of operating minutes per hour divided by 60 minutes.
Job Efficiency
0.83

Step 8. Machine transmission factor. See Table 6-2.
Transmission 1.00
Step 9. Blade adjustment factor. See note bottom Table 6-2.
Blade
1.00

Step 10. Grade correction factor. Uphill on a 2\% grade (Table 6-2 continued). Grade 0.98
Step 11. Determine the product of the correction factors.
Product, correction factors $=$

$$
0.89 \times 0.75 \times 0.80 \times 1.00 \times 1.00 \times 0.83 \times 1.00 \times 1.00 \times 0.98=0.43
$$

Step 12. Determine the dozer production.

$$
\text { Production }=210 \text { lcy } / \mathrm{hr} \times 0.43=90 \text { lcy } / \mathrm{hr}
$$

Step 13. Conversion to bcy.

$$
\frac{90 \mathrm{lcy} / \mathrm{hr}}{1.15}=78 \mathrm{bcy} / \mathrm{hr}
$$

Step 14. Determine the total cost to operate the dozer.
Cost:

O\&O	$\$ 54.00$ per hour
Operator $(\$ 12.00 \times 1.35)$	$\$ 16.20$
Total	$\$ 70.20$ per hour

Step 15. Determine the direct unit production cost.

$$
\text { Direct production cost }=\frac{\$ 70.20 \text { per hour }}{78 \mathrm{bcy} / \mathrm{hr}}=\$ 0.900 \text { per bcy }
$$

Problem 5

A 300-hp crawler tractor will be used to clear small trees and brush from a 15-acre site. By operating in the first gear, the tractor should be able to maintain a continuous forward speed of 1.2 mph . An angle-clearing blade will be used, and from past experience the average resulting clear width will be 10 ft . Assuming an efficiency of $50-\mathrm{min}-\mathrm{hr}$, how long will take to knock down the vegetation?
*** SOLUTION ***
Using Eq. 6.8 of Textbook, we have

$$
\begin{aligned}
& \text { Pr oduction }=\frac{\text { width of cut }(\mathrm{ft}) \times \text { speed }(\mathrm{mph})}{10}=\frac{10(1.2)}{10}=1.2 \mathrm{acre} / \mathrm{hr} \\
& \text { Time to knock down the vegetation }=\frac{\text { Number of Acres }}{\text { Production }}=\frac{15}{1.2}=12.5 \text { hours }
\end{aligned}
$$

Problem 6

Textbook: 7.2
Using equation 7-2:
Travel time per segment, $\min =\frac{1,300 \mathrm{ft}}{88 \times 23 \mathrm{mph}} \Rightarrow 0.64 \mathrm{~min}$

Problem 7

Textbook: 7.6

Solution next page

Step 1:

Empty weight (EVW)	Table 7-1	96,880 lb
Load volume:	$0.90 \times 31 \mathrm{cu} \mathrm{yd}=27.9$ lcy	
	swell factor cohesive $=0.76$	
Load volume bank measure:	27.9 lcy $\times 0.76 \times 1.1=23.3$ bcy	
Weight of load:	23.3 bcy $\times 2,900 \mathrm{lb}$ per bcy $=$	67,570 lb
	Gross weight (GVW)	164,450 lb

		Step 2	Step 3	Step 4	Step 5	Step 6
	Distance	RR	GR	TR	Speed	time
	ft	$\%$	$\%$	$\%$	mph	min
Haul (164,450 lb	200 (acc.)	3	5	8	5	0.45
or 83.16 tons)	400	3	5	8	11	0.41
	1,800	3	-2	1	34	0.60
	200 (dec.)	3	-4	-1	5	0.45
Return (96,880 lb	200 (acc.)	3	4	7	5	0.45
or 48.44 tons)	1,800	3	2	5	26	0.79
	400	3	-5	-2	33	0.14
	200 (dec.)	3	-5	-2	5	0.45

Step 6: Travel time
Step 7: Load time
Step 8: Dump time
Step 9: Turn time fill
Turn time cut
Step 10: Total cycle time scraper
3.74 min
0.80 min
0.37 min
0.21 min
0.30 min
5.42 min

Step 11: $\quad \mathrm{T}_{\mathrm{p}}=1.4(0.80)+0.25 \Rightarrow 1.37 \mathrm{~min}$
Step 12: $\quad \mathrm{N}=\frac{5.42 \mathrm{~min}}{1.37 \mathrm{~min}} \Rightarrow 3.96 \quad$ Use 4 scrapers
Step 13: 50 min per hr.
Step 14: Production
If 4 scrapers were used on the job production would be:
Production pusher (controlling) $=\frac{50 \mathrm{~min} / \mathrm{hr}}{1.37 \mathrm{~min}} \times 23.3 \mathrm{bcy} \Rightarrow \mathbf{8 5 0} \mathbf{~ b c y} / \mathbf{h r}$

