UNIVERSITY OF MARYLAND

Department of Civil and Environmental Engineering

College Park Campus Wednesday 20, 2002 SOLUTION to QUIZ #3

ENCE 355 – Introduction to Structural Design

NAME:

Determine the design strength of the compression member shown in the figure using the LRFD Specification and a steel with $F_v = 50$ ksi.

*** **SOLUTION** ***

Using a W14 \times 145, the following properties can be obtained from the LRFD Manual:

$$A_g = 42.7 \text{ in}^2$$

$$r_x = 6.33$$
 in

$$r_y = 3.98$$
 in \leftarrow Controls (smaller)

K = 0.65 from Table 1 (two fixed supports), therefore,

$$KL = 0.65(20) = 13 \text{ ft}$$

$$\frac{K_y L_y}{r_y} = \frac{12 \times 13}{3.98} = 39.20$$

Using Table 3-50 of the LRFD Manual (Part 16) and by interpolation, the design compressive strength can be obtained as follows:

$$\begin{array}{ccc} 39 & 38.0 \\ 39.20 & \phi_c F_{cr} \Rightarrow \frac{\phi_c F_{cr} - 38.0}{37.8 - 38.0} = \frac{39.20 - 39}{40 - 39} \Rightarrow \phi_c F_{cr} = 37.96 \, \text{ksi} \\ 40 & 37.8 \end{array}$$

Therefore, the design compressive strength is

$$P_u = \phi_c P_n = (\phi_c F_{cr}) A_g = 37.96(42.7) = 1,621 \text{ kips}$$

Formulas, Tables, and Figures

Table 1

Buckled shape of column is shown by dashed line	(a)	(b)	(c)	(d)	(e)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Theoretical K value	0.5	0.7	1,0	1.0	† 2.0	2.0
Recommended design value when ideal conditions are approximated	0.65	0.80	1,2	1.0	2 10	2.0
Hnd condition code		**** *** ***	Rotation fixed and translation fixed Rotation free and translation fixed Rotation fixed and translation free Rotation free and translation free			

Source: Loud and Rensaurce Factor Design Specification for Standard Steel Buildings, Desember 27, 1999 [Chicago: AISC]

$$P_u = \phi_c P_n = \phi_c F_{cr} A_g$$