UNIVERSITY OF MARYLAND Department of Civil and Environmental Engineering College Park Campus Wednesday 9, 2002 SOLUTION to QUIZ #2

ENCE 355 – Introduction to Structural Design NAME:

A rectangular beam of effective depth of 31 in. is to be designed to carry dead and live service shear forces of 8 kips and 11 kips, respectively. No web reinforcement is to be used. The compressive strength for concrete $f'_c = 4,000$ psi, and the yield strength for steel $f_y = 60,000$ psi. (a) What is the minimum width *b* of the beam cross section?

(b) If the beam effective depth were reduced to 7.5 in., what would be the width *b* of the cross section?

*** SOLUTION ***

(a) Minimum Width:

If no web reinforcement is to be used, the width must be selected so that the applied shear V_u is no larger than one-half the design shear strength ϕV_c . The calculations are as follows:

maximum
$$V_u = \frac{1}{2} \phi \left(2 \sqrt{f_c'} b_w d \right)$$

$$V_u = 1.4(8) + 1.7(11) = 29.9$$
 kips

Therefore,

$$29.9 \times 10^{3} = \frac{1}{2} \phi \left(2\sqrt{f_{c}'} b_{w} d \right) = \frac{1}{2} (0.85)(2) \sqrt{4000} (b)(31)$$

or

$$b = \frac{29.9 \times 10^3 (2)}{(0.85)(2)\sqrt{4000}(31)} = 17.94 \approx 18 \text{ in.}$$

Half Dia. of #8 bar

(b) Find *b* if d = 7.5 in.:

Total depth of beam = 7.5 + 1.5 + (0.5) = 9.5 in. < 10 in, therefore beam is considered shallow and can utilize the full shear strength ϕV_c (ACI Specifications):

$$29.9 \times 10^3 = \phi (2\sqrt{f_c' b_w} d) = (0.85)(2)\sqrt{4000}(b)(7.5)$$

$$b = \frac{29.9 \times 10^3}{(0.85)(2)\sqrt{4000}(7.5)} = 37.08 \approx 37 \text{ in.}$$

3 #8

(c) Formulas, Tables, and Figures

 ACI Code Provisions for Shear	• ACI Requirements for Strength
Reinforcement For member that are subject to shear and	– The ACI Code stipulates that the strength
flexure only, the amount of shear force that	(moment, shear, force) furnished shall meet the
the concrete (unreinforced for shear)can	following requirements
resist is	$\phi R_n \ge 1.4D + 1.7L$
$V_c = 2\sqrt{f'_c b_w d}$ Note, for rectangular beam $b_w = b$	Where ϕ = strength reduction factor as provided in Table 1 R_n = nominal or design strength (stress, moment, force, etc.)

ASTM Standard - English Reinforcing Bars

		0	0
Bar Designation	Diameter in	Area in ²	Weight Ib/ft
#3 [#10]	0.375	0.11	0.376
#4 [#13]	0.500	0.20	0.668
#5 [#16]	0.625	0.31	1.043
#6 [#19]	0.750	0.44	1.502
#7 [#22]	0.875	0.60	2.044
#8 [#25]	1.000	0.79	2.670
#9 [#29]	1.128	1.00	3.400
#10 [#32]	1.270	1.27	4.303
#11 [#36]	1.410	1.56	5.313
#14 [#43]	1.693	2.25	7.650
#18 [#57]	2.257	4.00	13.60

Note: Metric designations are in brackets

ACI Code Provisions for Shear Reinforcement

- However, the code requires that a minimum area of shear reinforcement be provided in all reinforced concrete flexural members when $V_u > \frac{1}{2} \phi V_c$, except as follows:
 - In slabs and footings
 - In concrete joist construction as defined in the code.
 - In beams with a total depth of less than 10 in., 2 ¹/₂ times the flange thickness, or one-half the width of the web, whichever is greater.

source J. Strength Reduction Factors

Type of Loading	φ
Bending	0.90
Shear and Torsion	0.85
Compression members (spirally reinforced)	0.75
Compression Members (tied)	0.70
Bearing on Concrete	0.70