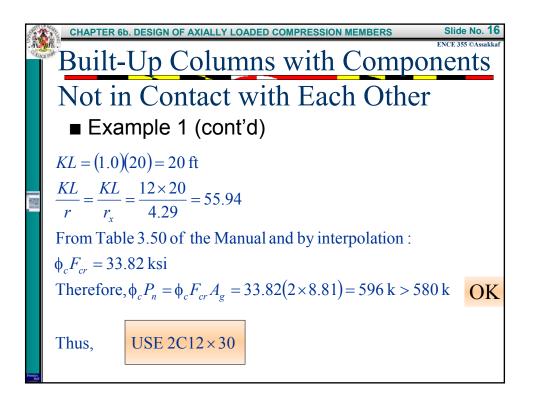
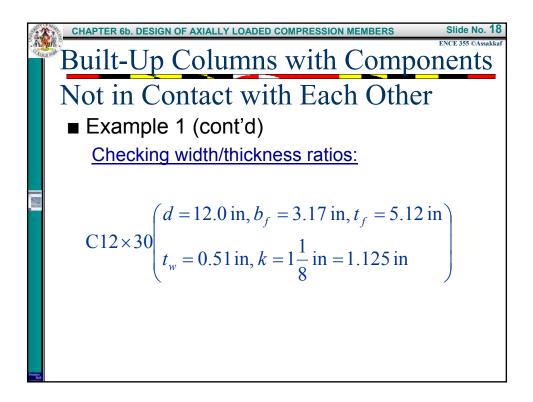


Slide No. 11
EXCE 355 CAMARKET
Built-Up Columns with Components
Not in Contact with Each Other
Example 1 (cont'd)
Assume
$$\frac{KL}{r} = 50$$

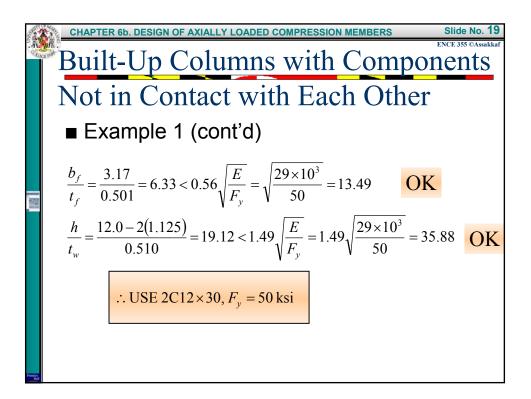
Then from Table 3.50 of the LRFD Manual,
 $\phi_c F_{cr} = 35.40$ ksi
 $A_{required} = \frac{P_u}{\phi_c F_{cr}} = \frac{580}{35.40} = 16.38 \text{ in}^2$
Try 2C12 × 30's (for each channel, $A = 8.81$
in², $I_x = 162$ in⁴, $I_y = 5.12$ in⁴, $\bar{x} = 0.674$ in)


Built-	Up C	Colui	mns	s wi	th C	Com		ents.
Not in	Cor	ntact	wi	th E	ach	Oth	ner	
■ LRF) Mar	uual F)osir	n Ta	hles	(P 1	16 T_ [,]	145)
				JII I O	IDIC3	, (i .	10.1-	143)
		-	TABL	E 3-50)			
Des	sign St	ress fo	r Cor	nores	sion N	/lembe	ers of	
	si Spec							a]
173,70,03,04								
φ _e F _e ksi	r <u>Ki</u>	¢ _e F _e , ksi	$\frac{KI}{r}$	¢ _c F _{er} ksi	$\frac{Kl}{r}$	φ _c F _{er} ksi	$\frac{Kl}{r}$	e,F₀, ksi
Φ.F. ksi 42.5	41	ksi 37.6	81	26.3	121	14.6	161	e _c F _{cr} ksi 8.23
φ _c F _c ksi	41 42	ksi	81 82	26.3 28.0	121 122	14.6 14.3	161 162	0,For ksi 8.23 8.13
Φ _c F _c ksi 42.5 42.5 42.5 42.5	r 41 42 43 44	ksi 37.6 37.4 37.1 36.9	81 82 83 84	ksi 26.3 28.0 25.7 25.4	121	14.6	161	e _c F _{cr} ksi 8.23
Φ _c F _c ksi 42.5 42.5 42.5 42.5 42.5	r 41 42 43 44 45	ksi 37.6 37.4 37.1 36.9 36.7	81 82 83 84 85	ksi 26.3 28.0 25.7 25.4 25.1	r 121 122 123 124 125	ksi 14.6 14.3 14.1 13.9 13.7	r 161 162 163 164 165	b₀ F ₀r ksi 8.23 8.13 8.03 7.93 7.84
Φ ₆ F ₆ ksi 42.5 42.5 42.5 42.4 42.4	r 41 42 43 44 45 48	ksi 37.6 37.4 37.1 36.9 36.7 36.4	81 82 83 84 85 86	ksi 26.3 28.0 25.7 25.4 25.1 24.8	r 121 122 123 124 125 126	ksi 14.6 14.3 14.1 13.9 13.7 13.4	r 161 162 163 164 165 168	0,F,r ksi 8 23 8 13 8 03 7 93 7 84 7.74
Φ _c F _c ksi 42.5 42.5 42.5 42.5 42.5	r 41 42 43 44 45 46 47	ksi 37.6 37.4 37.1 36.9 36.7	81 82 83 84 85	ksi 26.3 28.0 25.7 25.4 25.1 24.8 24.4	r 121 122 123 124 125 126 127	ksi 14.6 14.3 14.1 13.9 13.7 13.4 13.2	r 161 162 163 164 165 166 167	0,For ksi 8.23 8.13 8.03 7.93 7.84 7.74 7.65
Φ _c F _c ksi 42.5 42.5 42.5 42.4 42.4 42.4	r 41 42 43 44 45 48 47 48 47 48 49	ksi 37.6 37.4 37.1 36.9 36.7 36.4 36.2	81 82 83 84 85 86 87	ksi 26.3 28.0 25.7 25.4 25.1 24.8	r 121 122 123 124 125 126	ksi 14.6 14.3 14.1 13.9 13.7 13.4	r 161 162 163 164 165 168	0,F,r ksi 8 23 8 13 8 03 7 93 7 84 7.74

EXAMPLE 6b. DESIGN OF AXIALLY LOADED COMPRESSION MEMBERS
Side No. 13
EXCENSION OF AXIALLY LOADED COMPRESSION MEMBERS
Not in Contact with Each Other
• Example 1 (cont'd)


$$I_x = 2 \times 162 = 324 \text{ in}^2$$

 $I_y = 2[5.12 + 8.81(5.326)^2] = 510 \text{ in}^4$
Note that $5.326 = \frac{\text{distance of channels}}{2} - \overline{x}$
 $= \frac{12}{2} - 0.674 = 5.326 \text{ in}$



an 2	DESIGN OF AXIALLY						-	Slide No
Built-	Up Colu	m	ns	with	n C	om	pon	lent
Not in	Contact	t v	vith	n Ea	ch	Oth	ner	
Table 1	Buckled shape of column is shown by dashed line	(a) → #** () → #*** () → #*** () → #*** () → #*** () → #*** () → #*** () → #*** () → #*** () → #*** () → #**** () → #**** () → #**** () → #************************************			(d) + + + + + + + + + + + + + + + + + + +			
	Theoretical K value	0.5	0.7	1.0	1.0	2.0	2.0	
	Recommended design value when ideal conditions are approximated	0.65	0.80	1.2	1.4	2 10	2.0	
	End condition code		ера 1	Rotation fixed Rotation free Rotation fixed Rotation free	and translati and translat	o n f ixed ion free		
-	Source: Loud and Returner Facto. (Chicago: AISC)	r Desiga	Specification	for Standard S	eei Buildioga	Descenher 27,	1999	

ot in		ntac	t w	ith E		n Otł		en
LRFI	D Ma	anual	Desi	ign Ta	ables	s (P. 1	16.I-	145
			TABL	E 3-50)			-
Desid	an St	ress fo		0.0000000000000000000000000000000000000	5. 1920 - 193	Vembe	ers of	
						$, \phi_c =$		a]
JU NOI	opoc		iona c	211000	0100	1 YG -	0.00	
¢,Fa ksi	KI r	¢ _e F _{er} ksi	KI r	φ _e F _{er} ksi	KI	¢cFer ksi	<u>KI</u> r	o,F
$\phi_c F_{cr}$		$\phi_{v}F_{or}$	KI	¢ _c F _{er}	KI	¢.Fer		o,F ksi
φ _c F _{cr} ksi 41.8 41.7	<u>K/</u> 7 55 56	¢ _e F _{er} ksi	<u>KI</u> r	¢ _c F _{er} ksi	<u>KI</u> r	φ _c F _{er} ksi	<u>KI</u> r	o₅F ks 6.97
φ _c F _{cr} ksi 41.8 41.7 41.6	<u>K/</u> r 55 56 57	¢ _₽ F _₽ ksi 34.1 33.8 33.5	<u>KI</u> 95 96 97	¢ _c F _{cr} ksi 22.0 21.7 21.4	<u>KI</u> 135 136 137	φ _c F _{cr} ksi 11.7 11.5 11.4	<u>Kl</u> r 175 176 177	6.9 6.8 6.8
φ _c F _{cr} ksi 41.8 41.7 41.6 41.5	K/ r 55 56 57 58	¢ _e F _e , ksi 34.1 33.8 33.5 33.2	<u>KI</u> 95 96 97 98	¢ _c F _{cr} ksi 22.0 21.7 21.4 21.1	<u>KI</u> 135 136 137 138	φ _c F _{er} ksi 11.7 11.5 11.4 11.2	<u>Kl</u> r 175 176 177 178	6.97 6.89 6.81 6.81 6.81
φ _c F _{cr} ksi 41.8 41.7 41.6 41.5 41.4	KI r 55 56 57 58 59	¢ _e F _{er} ksi 34.1 33.8 33.5 33.2 33.0	<u>KI</u> 95 96 97 98 99	φ _e F _{er} ksi 22.0 21.7 21.4 21.1 20.8	<u>Ki</u> 135 136 137 138 139	φ _c F _{cr} ksi 11.7 11.5 11.4 11.2 11.0	<u>Kl</u> 175 176 177 178 179	6.8 6.8 6.8 6.8 6.8 6.8
¢cFcr ksi 41.8 41.7 41.6 41.5 41.4 41.3	KI r 55 56 57 58 59 60	¢ _e F _{er} ksi 34.1 33.8 33.5 33.2 33.0 32.7	<u>KI</u> 95 96 97 98 99 100	¢ _e F _{er} ksi 22.0 21.7 21.4 21.1 20.8 20.6	<u>Ki</u> 135 136 137 138 139 140	¢cFer ksi 11.7 11.5 11.4 11.2 11.0 10.9	<u>KI</u> 175 176 177 178 179 150	6.9 6.9 6.8 6.8 6.8 6.8 6.5
¢ _c F _{cr} ksi 41.8 41.7 41.6 41.5 41.4 41.3 41.2	KI 7 55 56 57 58 59 60 61	¢ ₈ F ₆₇ ksi 34.1 33.8 33.5 33.2 33.0 32.7 32.4	<u>KI</u> 95 96 97 98 99 100 101	¢ _e F _{er} ksi 22.0 21.7 21.4 21.1 20.8 20.6 20.2	<u>Ki</u> 135 136 137 138 139 140 141		<u>KI</u> 175 176 177 178 179 180 181	6.97 6.89 6.81 6.81 6.51 6.55
Φ _c F _{cr} ksi 41.8 41.7 41.6 41.5 41.4 41.3	KI r 55 56 57 58 59 60	¢ _e F _{er} ksi 34.1 33.8 33.5 33.2 33.0 32.7	<u>KI</u> 95 96 97 98 99 100	¢ _e F _{er} ksi 22.0 21.7 21.4 21.1 20.8 20.6	<u>Ki</u> 135 136 137 138 139 140	¢cFer ksi 11.7 11.5 11.4 11.2 11.0 10.9	<u>KI</u> 175 176 177 178 179 150	0,F, 6,97 6,89 6,81 6,81 6,81 6,81 6,55 6,55 6,55 6,55 6,51 6,37

<u> </u>	gure 4. Limitin	0	Ihicknes	se Ratine '	
$^{\circ}$	manaraa alam []			55 1 4105	
50	mpression El	ements			
		Width Thickness Ratio	Limiting Width-Thickness Ratios		
	Description of Element		Ap (compact)	λ , (noncompact)	
	Flanges of L-shaped rolled beams and channels in flexure	hát	0.38√ <i>ElF</i> , [c]	0.83√ <i>EIF</i> _ℓ [e]	
	Flanges of I-shaped hybrid or welded beams in flexure	b√t	$0.38\sqrt{E/F_{tf}}$	$0.95\sqrt{E/(F_L/k_c)} \ [e],$	
sta	Flanges projecting from built-up compression members	ыл	NA	$> 0.64\sqrt{E/(F_j/k_i)}$ [f	
Unstiffened Elements	Flarges of 1-shaped sections in projecting from compression elements; outstanding legs of pairs of angles in continuous contact; flanges of channels in pure compression	84	NA	0.56√ <i>ElF</i> ,	
	Legs of single angle struts. legs of double angle struts with separators, unstiffened elements, i.e., supported along one edge	há	NA	0,45√ <i>E</i> (F _y	
	Stems of tees	dA	NA	0.75√ <i>EIF</i> ,	

	Figure 4. (con Ratios for Con	ťd) Lin	niting Width-Th	ickness
Stiffened Elements	Webs in combined flexural and axial compression	hitu.	$\begin{aligned} &\text{for } P_{\theta} \phi_{h} P_{y} \leq 0.125 \text{ [c], [g]} \\ & 3.76 \sqrt{\frac{E}{F_{y}}} \left(1 - \frac{2.75P_{u}}{\phi_{h} P_{y}} \right) \\ &\text{for } P_{u} \phi_{h} P_{y} > 0.125 \text{ [c], [g]} \\ & 1.12 \sqrt{\frac{E}{F_{y}}} \left(2.33 - \frac{P_{u}}{\phi_{h} P_{y}} \right) \\ & \geq 1.49 \sqrt{\frac{E}{F_{y}}} \end{aligned}$	$[h]$ $5.70\sqrt{\frac{E}{F_s}} \left(1 - 0.74 \frac{P_s}{\phi_v P_y}\right)$
Stif	All other uniformly compressed stiffened elements, i.e., supported along two edges	b/t h/t _w	NA	1.49√ <i>E</i> ! <i>F</i> _y
	Circular hollow sections In axial compression In flexure	D/i	[d] NA 0.07 <i>E</i> /F	0.11 <i>E/F</i> _v 0.31 <i>E/F</i> _v