

AN AN	INTRODUCTION a. SYLLABUS, MAJOR TOPICS, & COMPUTERS Slide No. 2										
	Course Syllabus										
INSTRUCTOR:											
	Name:	Dr. Ibrahim A. Assakkaf									
	Office Hours:	MWF 10:00 am - 12:00 am and by appointment									
	Room:	0305, Engineering Classroom Building (EGR)									
A		Center for Technology and Systems									
		Management (CTSM)									
	Telephone:	(W) 301-405-3279									
	Email:	assakkaf@eng.umd.edu									
	URL:	http://ctsm.umd.edu/assakkaf									
		http://www.cee.umd.edu/assakkaf									

	INTRODUCTION a. SYLLABUS, M	AJOR TOPICS, & COMPUTERS	Slide No. 3
-Aug	Course Syl	labus	ENCE 355 ©Assakkai
	TEACHING A	<u>SSISTANT:</u>	
	Name:	Dr. Maged Sidki Morco	S
A	Office Hours	: MWF 12:00 pm – 1:00 p	pm
	Room:	TBA	
	Telephone:	(301) 276-1000, Rm. 25	53
	Email:	m_sidki@hotmail.com	
~			

	INTRODUCTION a. SYLLABUS, MAJOR T	OPICS, & COMPUTERS	Slide No. 6
A. offic.	Course Syllab	us	ENCE 355 ©Assakkaf
	<u>GRADING:</u>		
	Homework	20%	
¥	Exam I	25%	
	Exam II	25%	
	Final Exam	30%	
	Quizzes & Attenda	nce (±).	
		100%	
æ			

required. Professional presentation consists of neat and organized solution of problems on one side of **8.5"x11" papers**. Any homework not complying with professional standards will not be graded and will be assigned zero credit. The homework assignments are due one week after they are assigned. Homework will be assigned as the material is covered and will be collected every Monday at the beginning of the lecture period, starting on Monday 9/9. Assignments turned in late will be docked 10% for each day it is late past the original due date.

Slide No. 8 CF 355 @Assak

Slide No. 12

ENCE 355 ©Assakkaf

Course Syllabus

EXAMS AND QUIZZES:

All students must take all exams and quizzes including the final exam. Only extenuating circumstances will be accepted as an excuse for missing an exam. The student must notify the instructor of the reason for absence as soon as possible. Health related excuses require **medical reports** and the **signature of a physician** that provided treatment. You are encouraged to go over Chapter 4 of the Undergraduate Catalogue for the University policies, or visit http://www.inform.umd.edu/ugradcat/chapter4/attenda nce.html

Week	Lec.	Date	Section	Торіс		Homew	vork
1	1	W, 9/4	Handout	Introduction to the Course			
	2	F, 9/6	Handout	Structural Design and Analysis, Code Specifications	Hando	out	
2 PART I – REINFORCED CONCRETE							
				ANALYSIS AND DESIGN			
				SL Chapter 1 – Materials & Mechanics of Bending			
	3	M, 9/9	1.1 – 1.4	Concrete, ACI Building Code, Cement and Water, Aggregates	1-1		
		W. 0/11	1.5	Concrete in Compression	1-2		1 10
	4	W, 9/11	1.6 - 1.8	Concrete in Tension, Reinforcing Steel, and Beams	1-3	1-5	1-10
				SL Chapter 2 – Rectangular Reinforced Concrete			
	~	E 0/12		Beams and Slabs: Tension Steel Only			
	3	F, 9/13	2.1 - 2.2	Introduction, Methods of Analysis and Design			
- 2	6	M 0/16	2.5 - 2.4	Elements Strength of Restangular Design Methods Assumption	2.1.	2.2	
3	0	M, 9/10	2.3 - 2-0	Palanaad Overseinforced and Underseinforced Deems	2-1a	2-2	
			2.7	Balanced, Overreinforced, and Underreinforced Beams	2.5		
	7	W/ 0/18	2.0	Strongth Paguiraments	2-3		
	/	w, 9/10	2.9	Rectangular Beam Analysis for Moment (Tension Only)	2-7		
			2.10	One-Way Slabs	2-7		
	0	E 0/20	2.13	Rectangular Beam Design for Moment (Tension Only)	2-11	2.20	

Provide State		NTRO	DUCTION	Na. SYLLA	ABUS, MAJOR TOPICS, & COMPUTERS		Slide No. 15
	offi.	(rce	Syllabus		ENCE 355 ©Assakkaf
			_0u	120 1	Synabus		
		S	sche	dule 1	for Lecture (cont'd)		
					, , , , , , , , , , , , , , , , , , ,		
	Week	Lec.	Date	Section	Торіс		Homework
	4				SL [*] Chapter 3 – Reinforced Concrete Beams: T-Beams and Doubly Reinforced Beams		
		9	M, 9/23	3.1 - 3.2	Introduction, T-Beams Analysis	3-1	3-5
		10	W, 9/25	3.3, 3.5, 3.6	Development of T-Beam A _{s, max} , T-Beam Design for moment	3-6	3-12
	5	11	F, 9/27	3.6 - 3.7	Summary of T-Beams Analysis and Design		
A	5	12	M, 9/30	3.8 - 3.11	Doubly Reinforced Beams, Doubly RB Analysis	3-16	
-		13	W, 10/2	3.12 - 3.14	Doubly Reinforced Beam Design for Moment	3-22	
					SL* Chapter 4 – Shear in Beams		
		14	F, 10/4	4.1 – 4.2	Introduction, Shear Reinforcement Design Requirements	4-1	4-4
	6	15	M, 10//	4.3 – 4.4	Shear Analysis Procedure, Stirrups Design Procedure	4-5	4-12
					SL [°] Chapter 5 – Development, Splices, and Simple- Span Bar Cutoffs		
		16	W, 10/9	5 - 1 - 5.2	Development Length, Tension Bars	5-1	5-2
		17	F, 10/11	5.3 - 5.4	Development Length, Compression Bars, Standard Hooks	5-7	
	7	18	M, 10/14	5.9	Simple-Span Cutoffs and Bends	5-12	
					SL* Chapter 9 – Columns		
		19	W, 10/16	9.1 -9.3	Introduction, Strength (small eccentricity), Code Requirements		
		20	F, 10/18	9.4 – 9.5	Analysis of Short Columns, Design of Small Columns	9-3	9-9
ann-							

1		NTRO	DUCTION	Na. SYLLA	ABUS, MAJOR TOPICS, & COMPUTERS			Slide	No. 16			
. AL	and .	(EN	CE 355 (©Assakkaf						
	Schedule for Lecture (cont'd)											
	Week	Lec.	Date	Section	Торіс		Hom	ework				
	8	21	M, 10/21	9.7 – 9.11	The Load-Moment Relationship, Analysis (large eccentricity) PART II – STRUCTURAL STEEL ANALYSIS AND DESIGN	9-11						
		22	W, 10/23	1.1 - 1.7 1.8 - 1.21	MN Chapter 1 – Introduction to Structural Steel Design Advantages and Disadvantages, Early uses, Steel Sections Modern Structural Steels, Uses, Failure, and Computers MN [*] Chapter 2 – Specifications, Loads, and							
A	_	23	F, 10/25	2.1 - 2.4 2.5 - 2.6	Methods of Design Specifications and Building Codes, Loads, Dead & Live Loads Environmental Loads, Load & Resistance Factor Design	2-1						
	9	24	M, 10/28		*** EXAM I ***							
		25	W, 10/30	2.7 - 2.10 2.11 - 2.12	Load and Resistance Factors, Reliability and LRFD Advantages of LRFD, Computer Example MN [*] Chapter 3 – Analysis of Tansion Members	2-2 2-4	2-10					
		26	F. 10/1	3.1 - 3.3	Introduction, Design Strength, Net Areas	3-2	3-8					
	10	27	M, 11/4	3.4 - 3.5	Effect of Staggered Holes, Effective Net Areas	3-10	3-14	3-20	3-24			
		28	W, 11/6	3.6 - 3.7	Connecting Elements for Tension Members, Block Shear MN [*] Chapter 4 – Design of Tension Members	3-27	3-30	3-34				
		29	F, 11/8	4.1 - 4.3 4.4 - 4.5	Selection of Sections, Built-up Tension Members Rods and Bars Pin-connected Members, Design for Fatigue Loads	4-3	4-23					
(former												

A.R. M	(Cou	rse	Syllabus		ENCE 355 ©Ass		
Schedule for Lecture (cont'd)								
Week	Lec.	Date	Section	Торіс		Homework		
11				MN ⁻ Chapter 5 – Introduction to Axially Loaded Compression Members				
	30	M, 11/11	5.1 - 5.3	General, Residual Stress, Sections Used for Columns				
	31	W, 11/13	5.4 - 5.5	Development of Column Formulas, Euler Formula	5-2	5-4		
	32	F, 11/15	5.6 5.7	End Restraints and Effective Lengths of Columns Stiffened and Unstiffened Elements	5-6	5-10		
12	33	M, 11/18	5.8 - 5.9	Long, Short, and Intermediate Columns, Column Formulas	5-15	5-17		
			5.10 - 5.11	Maximum Slenderness Ratios, Example Problems				
	34	W, 11/20		MN Chapter 6 – Design of Axially Loaded				
			61 - 64	Introduction LRED Design Tables Built-up Columns	6-2	6-8		
	35	F 11/22	6.5	Built-up Columns w/ components in contact with each other	6-22	0-0		
		-,	6.7	Built-up Columns w/ components not in contact with each other				
13				MN* Chapter 8 – Introduction to Beams				
	36	M, 11/25	8.1 - 8.4	Types of Beams, Sections, Stresses, Plastic Hinges	8-2			
	37	W, 11/27	8.5 - 8.7	Elastic Design, Plastic Modulus, Theory of Plastic Analysis	8-4	8-11		

1	1400 L	NTRO	DUCTIO	Na. SYLLA	ABUS, MAJOR TOPICS, & COMPUTERS	Slide No. 18					
. A.	uffi . a mit	(Cou	rse S	Syllabus	ENCE 355 ©Assakkaf					
	Schedule for Lecture (cont'd)										
	Week	Lec	Date	Section	Tonic	Homework					
	14	39	M, 12/2	8.8 - 8.9 8.10	The Collapse Mechanism, Virtual-Work Method Location of Plastic Hinge for Uniform Loading	8-22 8-28 8-31					
		40	W, 12/4	8.11 - 8.12	Continuous Beams, Building Frames MN [*] Chapter 9 – Design of Beams for Moments	8-37					
A		41	F, 12/6	9.1 – 9.3	Introduction, Yielding Behavior, Design of Beams (Zone 1) *** EXAM II ***	9-1 9-4 9-10					
	15	42	M, 12/9	9.4 – 9.5 9.6	Lateral Support of Beams, Inelastic Buckling (Zone 2) Moment Capacities	9-12 9-16					
		43	W, 12/11	9.7 – 9.9	Elastic Buckling (Zone 3), Design Charts, Noncompact Sections	9-24					
		44	F, 12/13		Review						
	16		T, 12/19	All material	*** FINAL EXAM - 8-10 AM, EGR	2112 ***					
Contractores											

