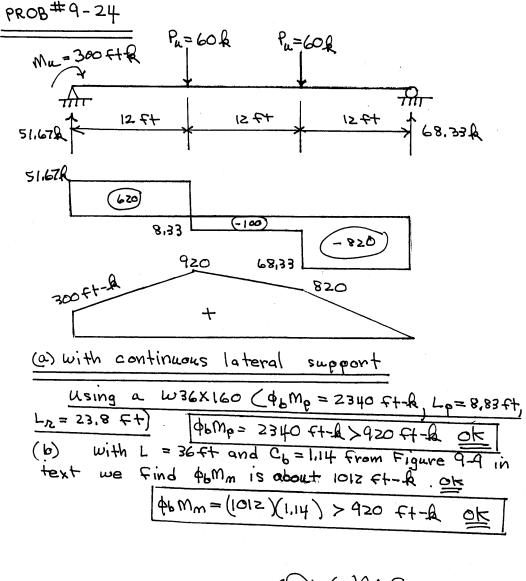

ENCE 355 – Introduction to Structural Design SOLUTIONS to Homework Set No. 15 Fall 2002

PROB#9-12

Assume beam wt = 1161bs/ft $w_{u} = (1.2)(2.66) + (1.6)(2) = 6.34 / ft$ $M_{u} = (6.34)(36)^{2} = 10.27 + ft$ $Net Z_{x} Reqd = \frac{(12)(10.27)}{(0.9)(50)} = 2.74 in.^{3}$ $Try a w_{30x} 116 (Z_{x} = 378 in.^{3}, d = 30.0 in.)$ $t_{f} = 0.850 in.$ $b_{f} = 10.5 in.$

0,850 in. 14.575in. 30,0 in. $A_{fg} = (10.5)(0.850) = 8.925 \text{ in.}^{2}$ $A_{fm} = 8.925 - (4)(1.5)(0.850) = 5.10 \text{ in.}^{2}$

For no reduction in flange area Afm >0,92 Afg


$$\frac{A_{fm}}{A_{fg}} = \frac{5.10}{8.925} = 0.571 < 0.92$$
 is flange area must be reduced

$$A_{fe} = \frac{5}{6} \frac{F_{LL}}{F_{y}} \frac{A_{fm}}{A_{fm}} = \frac{5}{65} \frac{65}{50} \frac{5.10}{5.10} = 5.52 \text{ in.}^{2}$$

Reduced
$$Z_x = 378 - (8.925 - 5.52)(4.575)(2)$$

= 279 in.3

PROB#9-16

Assume beam wt = 97 lbs/f+ $w_{L} = (1.2)(2.297) + (1.6)(3.0) = 7.56 R/f+$ $m_{L} = \frac{(7.56)(25)^{2}}{8} = 591 f+-R$ Cb = 1.14 from Figure 9-9 in text $M_{equiv} = \frac{591}{1.14} = 518 f+-R$ $USE = 0.18 \times 97$ from Beam Design Moment charts in $96 m_{m} = 791 f+R > 591$ LRFD Manual.

