University of Maryland, College Park Department of Civil \& Environmental Engineering

Quiz 4 Solution, Closed Book \& Notes, for 15 minutes
 April 6, 2001

ENCE 203 - Computation Methods in Civil Engineering II
Name: \qquad

Problem 1

Given the following set of equations, find the solution using the method of determinants:

$$
\begin{aligned}
& 2 X_{1}-7 X_{2}=1 \\
& 3 X_{1}+5 X_{2}=3 \\
& X_{1}+X_{2}-X_{3}=4
\end{aligned}
$$

Note that $X_{i}=\frac{\left|A_{i}\right|}{|A|}$.
$A=\left[\begin{array}{ccc}2 & -7 & 0 \\ 3 & 5 & 0 \\ 1 & 1 & -1\end{array}\right], \quad C=\left|\begin{array}{l}1 \\ 3 \\ 4\end{array}\right|$
$|A|=\left|\begin{array}{ccc}2 & -7 & 0 \\ 3 & 5 & 0 \\ 1 & 1 & -1\end{array}\right|=(-1)[2(5)-(-7)(3)]=-31$
$\left|A_{1}\right|=\left|\begin{array}{ccc}1 & -7 & 0 \\ 3 & 5 & 0 \\ 4 & 1 & -1\end{array}\right|=(-1)[(1)(5)-(-7)(3)]=-26$
$\left|A_{2}\right|=\left|\begin{array}{ccc}2 & 1 & 0 \\ 3 & 3 & 0 \\ 1 & 4 & -1\end{array}\right|=(-1)[2(3)-(1)(3)]=-3$
$\left|A_{3}\right|=\left|\begin{array}{ccc}2 & -7 & 1 \\ 3 & 5 & 3 \\ 1 & 1 & 4\end{array}\right|=95$
Therefore,

$$
\begin{aligned}
& X_{1}=\frac{\left|A_{1}\right|}{|A|}=\frac{-26}{-31}=0.838710 \\
& X_{2}=\frac{\left|A_{2}\right|}{|A|}=\frac{-3}{-31}=0.096774 \\
& X_{3}=\frac{\left|A_{3}\right|}{|A|}=\frac{95}{-31}=-3.064516
\end{aligned}
$$

University of Maryland, College Park
 Department of Civil \& Environmental Engineering

Quiz 4 Solution, Closed Book \& Notes, for 15 minutes April 6, 2001

ENCE 203 - Computation Methods in Civil Engineering II Name: \qquad

Problem 2

A coefficient matrix of a set of simultaneous equations is decomposed into its lower and upper triangular matrices \boldsymbol{L} and \boldsymbol{U}, respectively. What is the set of these equations if

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 0 \\
3 & 2 & 3
\end{array}\right], \quad U=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{c}
0 \\
2.5 \\
3
\end{array}\right]
$$

The system of equations can be given in matrix form as $[\boldsymbol{A}][\boldsymbol{X}]=[\boldsymbol{C}]$.
*** SOLUTION ***
$L U=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 2 & 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 8 & 10 \\ 3 & 10 & 22\end{array}\right]$
Therefore, the set of these equations is

$$
\begin{aligned}
& X_{1}+2 X_{2}+3 X_{3}=0 \\
& 2 X_{1}+8 X_{2}+10 X_{3}=2.5 \\
& 3 X_{1}+10 X_{2}+22 X_{3}=3
\end{aligned}
$$

