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First-order Ordinary Differential 
Equations

! Galerkin Method
Procedure for Deriving Galerkin 
Approximating Polynomial
1. For a given ordinary differential equation, 

assume that the solution is a differentiable 
function such as given by the following 
polynomial:

n
n xbxbxbby ++++= L2

210� (29)
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First-order Ordinary Differential 
Equations

! Galerkin Method
2. Use the boundary condition of the ordinary 

differential equation to evaluate one of the 
coefficients of the assumed function or to 
provide a condition toward the solution of the 
coefficients.

3. Provide an expression for the error e as

(30)
dx
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First-order Ordinary Differential 
Equations
! Galerkin Method

4. Compute the weight wi for each coefficient, 
where

5. The normal equations are computed from
i

i db
ydw
�

= (31)
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First-order Ordinary Differential 
Equations

! Example 15 � Galerkin Method
Using the Galerkin method with a linear 
model ( i.e. = bo + b1x) and for 0 ≤ x ≥ 1 to 
find an approximating function for the 
following differential:

Using this function, estimate y at x = 0.6
and compare with the true value.

0at  1such that     === xyxy
dx
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First-order Ordinary Differential 
Equations

! Example 15 (cont�d) � Galerkin Method

( ) ( )

11

010

10

�
        and             1�

�
1010�

�

b
dx
ydxby

dx
dy

dx
yde

bbby
xbby

=+=

−=

=⇒+==
+=



4

© Assakkaf

Slide No. 162

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 8e.  DIFFERENTIAL EQUATIONS

First-order Ordinary Differential 
Equations

! Example 15 (cont�d) � Galerkin Method
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First-order Ordinary Differential 
Equations

! Example 15 (cont�d) � Galerkin Method
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First-order Ordinary Differential 
Equations

! Example 15 (cont�d) � Galerkin Method
Therefore the approximating function (linear 
polynomial) is given by

and
The true value is given by

xxbby
9
41� 10 +=+=

( ) ( ) 2667.16.0
9
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Higher-order Differential 
Equations

! Many engineering problems require the 
solution of higher-order differential 
equations.

! For example a second-order differential 
equation can be given as
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Higher-order Differential 
Equations

! The function f(.) does not need to 
include all the parameters x, y, and 
dy/dx.

! Examples of higher-order differential 
equations are

042
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Higher-order Differential 
Equations

! The methods previously introduced can 
be used to solve higher-order 
differential equations after transforming 
them into systems of first-order 
differential equations.

! The procedure for transforming the DE�s 
for the following example is as follows: 
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Higher-order Differential 
Equations

becomes
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Higher-order Differential 
Equations

! Higher-order Differential Equations
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Higher-order Differential 
Equations

! Example � Simply Supported Beam

( )
EI

xM
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w = 2 k/ft
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Higher-order Differential 
Equations

! Example (cont�d) � Simply Supported 
Beam

V

M

x

w = 2 k/ft

10 kips 2

2

10
010

0
2

210

xxM
xxM

xxxMM

−=
=−+−

=




−+−=∑



9

© Assakkaf

Slide No. 172

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 8e.  DIFFERENTIAL EQUATIONS

Higher-order Differential 
Equations

! Example � Simply Supported Beam
Let

Hence
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Higher-order Differential 
Equations

! Example (cont�d) � Simply Supported Beam
Assume that EI = 3600 kip/ft2 and at x = 0, 
y = 0 and θ = - 0.02314, and h = 0.1.
Using basic Euler�s method for example, 
the following equations result: 
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Higher-order Differential 
Equations

! Example (cont�d) � Simply Supported Beam
First Iteration (i = 0)
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Higher-order Differential 
Equations

! Example (cont�d) � Simply Supported 
Beam
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Higher-order Differential 
Equations

! Example (cont�d) � Simply Supported Beam
Second Iteration (i = 1)
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Higher-order Differential 
Equations

! Example (cont�d) � Simply Supported 
Beam
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Higher-order Differential 
Equations
! Example (cont�d) � Simply Supported Beam

x (ft) y (ft) Exact θ Exact y (ft)
0 0 -0.0231481 0 -0.0231481 0

0.1 0.0002750 -0.0231481 -0.0023148 -0.0231343 -0.0023143
0.2 0.0005444 -0.0231206 -0.0046296 -0.0230933 -0.0046260
0.3 0.0008083 -0.0230662 -0.0069417 -0.0230256 -0.0069321
0.4 0.0010667 -0.0229853 -0.0092483 -0.0229318 -0.0092302
0.5 0.0013194 -0.0228787 -0.0115468 -0.0228125 -0.0115176
0.6 0.0015667 -0.0227467 -0.0138347 -0.0226681 -0.0137919
0.7 0.0018083 -0.0225900 -0.0161094 -0.0224993 -0.0160504
0.8 0.0020444 -0.0224092 -0.0183684 -0.0223066 -0.0182909
0.9 0.0022750 -0.0222048 -0.0206093 -0.0220906 -0.0205110
1 0.0025000 -0.0219773 -0.0228298 -0.0218518 -0.0227083
2 0.0044444 -0.0185564 -0.0434304 -0.0183333 -0.0429629
3 0.0058333 -0.0134412 -0.0598018 -0.0131481 -0.0588193
4 0.0066667 -0.0071870 -0.0704996 -0.0068518 -0.0688887
5 0.0069444 -0.0003495 -0.0746349 0.0000000 -0.0723377
6 0.0066667 0.0065158 -0.0718744 0.0068519 -0.0688886
7 0.0058333 0.0128533 -0.0624403 0.0131482 -0.0588191
8 0.0044444 0.0181075 -0.0471104 0.0183334 -0.0429626
9 0.0025000 0.0217227 -0.0272179 0.0218519 -0.0227079
10 0.0000000 0.0231436 -0.0046518 0.0231482 0.0000000

The exact solution is
given by
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Boundary-Value Problems

! The previous methods for solving 
ordinary differential equations can be 
used to solve higher-order differential 
equations as discussed earlier.

! These methods require the initial 
conditions to be at the same x value.
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Boundary-Value Problems

! For example, the initial conditions in 
Example 15 were given as

! The rotationθ is not usually known.
! However, in Ex. 15 it is known that at x

= 0, y = 0 and at x = 10, y = 0

0231481.0
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0

0

0
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Boundary-Value Problems

! The two conditions have different x
values. Therefore, they cannot be used 
in solving the differential equation based 
on the previous methods.

! In this case, we are dealing with a
boundary-value problem.

! Boundary-value problems can be solved 
numerically using Shooting and Finite-
difference methods.
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Boundary-Value Problems

! Shooting Method
� The shooting method is a trial-and-error 

method that uses any of the previously 
introduced methods for solving differential 
equations.

� The shooting method is based on 
converting the boundary-value problem 
into an equivalent initial-value problem.
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Boundary-Value Problems

! Finite-Difference Method
Recall the finite-difference expressions for 
approximating the first and second 
derivatives based on two-step method
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Boundary-Value Problems

! Finite-Difference Method
� In this method, the derivatives in the 

differential equation are replaced by finite-
difference equations (formulas).

� Then, the resulting DE, which is now in a 
finite-difference form, is used at some 
interior points using a selected step size h
and the boundary conditions.
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Boundary-Value Problems

! Finite-Difference Method
� Each use of the finite-difference equation 

results in a linear equation in terms of the 
unknown solutions at the selected interior 
points.

� In this case, we get a system of linear 
equations that need to be solved 
simultaneously to obtain the solution at the 
interior points.
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Boundary-Value Problems

! Example 16 � Simply Supported Beam
The simply supported beam is subjected to 
distributed loading w as shown in the 
figure.  Numerically, find the bending 
moment M at each node along its span.

w = 2 k/ft

10 ft
x
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Boundary-Value Problems

! Example 16 � Simply Supported Beam

0 ,10at  and           
0 ,0at                   

:sB.C.'

==
==

Mx
Mx

x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5
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Boundary-Value Problems

! Example 16 (cont�d) � Simply 
Supported Beam

The governing differential equation in this 
case is given by

or

load ddistribute2

2

== w
dx

Md

-22

2

=
dx

Md
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Boundary-Value Problems

! Example 16 (cont�d) � Simply 
Supported Beam

The original differential equation can be 
converted to a finite-difference equation 
(see Eq. 36) as follows:

22
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Boundary-Value Problems

! Example 16 (cont�d) � Simply 
Supported Beam

h, is case, is equal to 2.5 ft, therefore Eq. 37 
can be simplified as follows.
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2
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Boundary-Value Problems

! Example 16 (cont�d) � Simply 
Supported Beam

Application of Eq. 38 at the interior nodes 
2, 3, and 4, yields a set of three 
simultaneous equations as follows:
At Node 2:

x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5

x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5

5.122 321 −=+− MMM
0
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Boundary-Value Problems

! Example 16 (cont�d) � Simply 
Supported Beam

At Node 3:

At Node 4

5.122 432 −=+− MMM
x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5

x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5

5.122 543 −=+− MMM
x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5

x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5

0
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Boundary-Value Problems

! Example 16 (cont�d) � Simply 
Supported Beam

5.122               
5.12   2    
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Boundary-Value Problems

! Example 16 (cont�d) � Simply 
Supported Beam

Equation 39 yields the solution as follows:

kips-ft 
75.18
00.25
75.18
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2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5

x

2.5 2.5 2.5 2.5
10 ft

M1 M2 M3 M4 M5
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I wish you good luck
in your final 

Exams

☺

☺


