

Numerical Integration

■ Gauss Quadrature

- The methods for numerical integration (i.e., Trapezoidal and Simpson's rules) that were discussed previously are based on evenly spaced function value.
- Consequently, the location of the base points used in these equations was predetermined or fixed.

Numerical Integration

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
 - Gauss Quadrature

- For example, the trapezoidal rule is based on taking the area under the traight line connecting the function values at the ends of the integration interval.
- In reference to Figure 1, the trapezoidal rule can be expressed as

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \approx(b-a) \frac{f(b)+f(a)}{2} \tag{1}
\end{equation*}
$$

Numerical Integration

Figure $1 f(x)$

Numerical Integration

- Gauss Quadrature

- Because the trapezoidal rule requires that the line pass through the ends points (or called the pivotal points), there are cases where the formula results in a large error as shown in Figure 1.
- If we remove the constraint of fixed base points, then we can evaluate the area under a straight line that connects any two points on the curve (see Figure 2).

Numerical Integration

- Gauss Quadrature

Figure $2 f(x)$

Numerical Integration

- Gauss Quadrature

- If these two points are positioned wisely, then a straight line can defined that would balance the positive and negative errors as shown in Figure 2.
- In this case, the estimate of the integral will improve tremendously.
- This basic concept is the heart of the Gauss Quadrature techniques

Numerical Integration

- Gauss Quadrature
- Before describing Gauss's approach, it would be proper to derive the trapezoidal formula using the method of undetermined coefficients that will be employed in deriving the Gauss quadrature.
- Developing the trapezoidal method in this approach will make easier to understand the development of Gauss quadrature later on.

Numerical Integration

- Gauss Quadrature
- Deriving Trapezoidal Rule using the Method of Undetermined Coefficients

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \approx(b-a) \frac{f(b)+f(a)}{2} \tag{1}
\end{equation*}
$$

Eq 1 can be expressed as

$$
\begin{equation*}
I=\int_{a}^{b} f(x) d x \approx C_{1} f(a)+C_{2} f(b) \tag{2}
\end{equation*}
$$

Numerical Integration

■ Gauss Quadrature

- Deriving Trapezoidal Rule using the Method of Undetermined Coefficients

Where C_{1} and C_{2} are constant to be determined.
We note that the trapezoidal rule should provide exact results when the function being integrated is a constant or straight line.
Two simple equations that represent these cases are $f(x)=1$ and $f(x)=x$.

Numerical Integration

- Gauss Quadrature
- Deriving Trapezoidal Rule

If $f(x)=1$, then $f(a)=f(b)=1$ in Equation 2 And after changing the limits of integration of Eq.

2 , the following equalities should hold:

$$
\begin{aligned}
\int_{-(b-1) / 2}^{(b-a) / 2} f(x) d x & =C_{1} f(a)+C_{2} f(b) \\
& =C_{1}(1)+C_{2}(1) \\
& =C_{1}+C_{2}
\end{aligned}
$$

Numerical Integration

- Gauss Quadrature
- Deriving Trapezoidal Rule

$$
\begin{aligned}
C_{1}+C_{2} & =\int_{-(b-a) / 2}^{(b-a) / 2} f(x) d x=\int_{-(b-a) / 2}^{(b-a) / 2}(1) d x \\
C_{1}+C_{2} & =\left.x\right|_{-(b-a) / 2} ^{(b-a) / 2}=\frac{b-a}{2}+\frac{b-a}{2}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
C_{1}+C_{2}=b-a \tag{3}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature

- Deriving Trapezoidal Rule

If $f(x)=x$, then $f(a)=-(b-a) / 2$ and $f(b)=(b-a) / 2$ in
Equation 2.
And after changing the limits of integration of Eq.
2 , the following equality should hold:

$$
\begin{aligned}
\int_{-(b-1) / 2}^{(b-a) / 2} f(x) d x & =C_{1} f(a)+C_{2} f(b) \\
& =C_{1} \frac{-(b-a)}{2}+C_{2} \frac{b-a}{2}
\end{aligned}
$$

Numerical Integration

- Gauss Quadrature
- Deriving Trapezoidal Rule

$$
\begin{aligned}
& -C_{1} \frac{b-a}{2}+C_{2} \frac{b-a}{2}=\int_{-(b-a) / 2}^{(b-a) / 2} f(x) d x=\int_{-(b-a) / 2}^{(b-a) / 2} x d x \\
& -C_{1} \frac{b-a}{2}+C_{2} \frac{b-a}{2}=\left.\frac{x^{2}}{2}\right|_{-(b-a) / 2} ^{(b-a) / 2}=\frac{(b-a)^{2}}{8}-\frac{(b-a)^{2}}{8}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
-C_{1} \frac{b-a}{2}+C_{2} \frac{b-a}{2}=0 \tag{4}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature

- Deriving Trapezoidal Rule

Equations 3 and 4 can be solved
simultaneously for the constants C_{1} and C_{2} as
follows:

$$
\begin{aligned}
C_{1}+C_{2} & =b-a \\
-\frac{b-a}{2} C_{1}+\frac{b-a}{2} C_{2} & =0
\end{aligned}
$$

$$
(b-a)\left(-C_{1}+C_{2}\right)=0
$$

Numerical Integration

■ Gauss Quadrature
 - Deriving Trapezoidal Rule

But $(b-a)$ cannot be zero, therefore,

$$
\begin{gathered}
-C_{1}+C_{2}=0 \Rightarrow C_{2}=C_{1} \\
C_{1}+C_{2}=b-a \\
C_{1}+C_{1}=b-a
\end{gathered}
$$

or

$$
\begin{equation*}
C_{1}=\frac{b-a}{2}=C_{2} \tag{5}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature
- Deriving Trapezoidal Rule

Substituting the obtained values of the constants C_{1} and C_{2} into Equation 2, yields the Trapezoidal formula

$$
\begin{aligned}
I & =C_{1} f(a)+C_{2} f(b) \\
& =\frac{b-a}{2} f(a)+\frac{b-a}{2} f(b)
\end{aligned}
$$

$$
I=(b-a) \frac{f(b)+f(a)}{2} \longleftarrow \text { Trapezoidal Formula }
$$

Numerical Integration

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
- Gauss Quadrature
- Derivation of Two-Point Gauss Quadrature Formula

As was the case for the derivation of trapezoidal rule, two-point gauss quadrature formula can be developed in a similar manner using the following form:

$$
\begin{equation*}
I \approx C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right) \tag{6}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature
- Derivation of Two-Point Gauss Quadrature Formula
- However, in contrast to the trapezoidal rule that used fixed end points a and b, the function arguments x_{1} and x_{2} are not fixed at the end points, but rather are unknown at this point as shown in Figure 4.
- In this case, we have a total of four unknowns that need to be evaluated.

Numerical Integration

Figure 4

Numerical Integration

- Gauss Quadrature
- Derivation of Two-Point Gauss Quadrature Formula
- Note that in the figure, the limits of the integration are from -1 to 1 .
- This was intentionally done to simplify the mathematics and to make the formulation as general as possible as we will see later.

Numerical Integration

■ Gauss Quadrature
 - Derivation of Two-Point Gauss Quadrature Formula

- In order to determine the four unknowns C_{1}, C_{2}, x_{1}, and x_{2}, we need to define four conditions as follows:
Equation 6 should fit the integral with constant, linear, parabolic, and cubic functions, that is

Table 1

	Constant	Linear	Parabolic	Cubic
$f(x)$	1	x	x^{2}	x^{3}

Numerical Integration

- Gauss Quadrature
- With respect to Eq. 6 and Table 1, the following set of equations needs to be solved:

$$
\begin{align*}
& C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)=\int_{-1}^{1}(1) d x=2 \\
& C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)=\int_{-1}^{1} x d x=0 \tag{7}\\
& C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)=\int_{-1}^{1} x^{2} d x=\frac{2}{3} \\
& C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)=\int_{-1}^{1} x^{3} d x=0
\end{align*}
$$

Numerical Integration

Gauss Quadrature

- Eq. 7 can be expressed as follows:

$$
\begin{align*}
& C_{1}(1)+C_{2}(1)=2 \tag{8}\\
& C_{1} x_{1}+C_{2} x_{2}=0 \tag{9}\\
& C_{1} x_{1}^{2}+C_{2} x_{2}^{2}=\frac{2}{3} \tag{10}\\
& C_{1} x_{1}^{3}+C_{2} x_{2}^{3}=0 \tag{11}
\end{align*}
$$

Numerical Integration

- Gauss Quadrature
- Derivation of Two-Point Gauss Quadrature Formula
- From Eq. $8 \quad C_{2}=2-C_{1}$
- And by substituting C_{2} into Eq. 9, yields

$$
C_{1} x_{1}+\left(2-C_{1}\right) x_{2}=0
$$

or

$$
\begin{equation*}
x_{1}=\frac{-\left(2-C_{1}\right) x_{2}}{C_{1}}=\frac{\left(C_{1}-2\right) x_{2}}{C_{1}} \tag{12}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature
- When x_{1} of Eq. 12 is substituted in Equation 10, this equation (Eq.10) becomes

$$
\begin{aligned}
& C_{1} x_{1}^{2}+C_{2} x_{2}^{2}=\frac{2}{3} \\
& C_{1} \frac{\left(C_{1}-2\right)^{2} x_{2}^{2}}{C_{1}^{2}}+\left(2-C_{1}\right) x_{2}^{2}=\frac{2}{3}
\end{aligned}
$$

Solving for x_{2}^{2}, gives

$$
\begin{equation*}
x_{2}^{2}=\frac{C_{1}}{6-3 C_{1}} \tag{13}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature
- Derivation of Two-Point Gauss Quadrature Formula
- Substituting x_{1} of Eq. 12 into Eq. 11 gives

$$
\begin{aligned}
& C_{1} x_{1}^{3}+C_{2} x_{2}^{3}=0 \\
& C_{1} \frac{\left(C_{1}-2\right)^{3} x_{2}^{3}}{C_{1}^{3}}+\left(2-C_{1}\right) x_{2}^{3}=0
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
x_{2}^{3}\left(C_{1}-2\right)\left[\left(C_{1}-2\right)^{2}-C_{1}^{2}\right]=0 \tag{14}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature
 - Derivation of Two-Point Gauss Quadrature Formula

- x_{2} cannot be zero and C_{1} cannot be 2 in Equation 14, therefore Equation 14 implies that

$$
\begin{aligned}
\left(C_{1}-2\right)^{2}-C_{1}^{2} & =0 \\
C_{1}^{2}-4 C_{1}+4-C_{1}^{2} & =0 \\
-4 C_{1} & =-4
\end{aligned}
$$

or

$$
\begin{equation*}
C_{1}=1 \tag{15}
\end{equation*}
$$

Numerical Integration

- Gauss Quadrature
- Derivation of Two-Point Gauss Quadrature Formula
- Substituting for C_{1} in Eq. 8 and in Eq. 13 gives

$$
\begin{aligned}
& C_{2}=1 \\
& x_{2}=\sqrt{\frac{C_{1}}{6-3 C_{1}}}=\sqrt{\frac{1}{6-3(1)}}=\frac{1}{\sqrt{3}}=0.5773503
\end{aligned}
$$

- And from Eq. 11

$$
x_{1}=-x_{2}=-\frac{1}{\sqrt{3}}=-0.5773503
$$

Numerical Integration

- Two-Point Gauss Quadrature Formula

$$
\begin{align*}
& I \approx \int_{-1}^{1} f(x) d x=C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right) \\
& I \approx \int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) \tag{16}
\end{align*}
$$

Numerical Integration

- Higher-Point Gauss Quadrature

 Formulas- Other higher point formulas can be developed in the same manner.
- As expected, the higher the Gauss Quadrature formula is, the higher the accuracy that can be obtained.
- The equations needed to determine the factors can be given in a compact form as

Numerical Integration

■ How to Apply Gauss Quadrature

- Transformation of variables

- It was noticed in Eqs. 16 and 18 that the limits of integration are from -1 to 1 .
- This was done intentionally to simplify the mathematics and to make the formulation as general as possible.
- A simple change of variable can be used to translate other limits of integration into this form.

Numerical Integration

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
- How to Apply Gauss Quadrature
- Transformation of variables
- This can done by assuming a new variable w is related to the original variable x in a linear fashion as

$$
\begin{equation*}
x=A+B x_{G} \tag{19}
\end{equation*}
$$

- If the lower limit, $x=a$, this corresponds to

$$
x_{G}=-1
$$

Numerical Integration

- How to Apply Gauss Quadrature
- Transformation of variables
- These values can be substituted into Eq. 19 to give

$$
\begin{align*}
& x=A+B x_{G} \\
& a=A+B(-1) \tag{20}
\end{align*}
$$

- Similarly, the upper limit $x=b$ correspond to

$$
x_{G}=1
$$

Numerical Integration

- How to Apply Gauss Quadrature
- Transformation of variables
- These values can be substituted into Eq. 19 to give

$$
\begin{align*}
& x=A+B x_{G} \\
& b=A+B(1) \tag{21}
\end{align*}
$$

- Solving Eqs. 20 and 21 simultaneously, gives

$$
\begin{equation*}
A=\frac{b+a}{2} \quad \text { and } \quad B=\frac{b-a}{2} \tag{22}
\end{equation*}
$$

Numerical Integration

,

- How to Apply Gauss Quadrature
- Transformation of variables
- Substituting for A and B into Eq. 19, yields the following transformation equation:

$$
\begin{equation*}
x=\frac{b+a}{2}+\frac{b-a}{2} x_{G} \tag{23}
\end{equation*}
$$

- And this equation can be differentiated to give

$$
\begin{equation*}
d x=\frac{b-a}{2} d x_{G} \tag{24}
\end{equation*}
$$

Numerical Integration

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

Gauss Quadrature Transformation

Original Function	Transformed Function
$I \approx \int_{a}^{b} f(x) d x$	
$x=\frac{b+a}{2}+\frac{b-a}{2} x_{G} \quad$	
$d x=\frac{b-a}{2} d x_{G}$	

Numerical Integration

- Example 6

Evaluate the following integral using 2, 3, and 4-point Gauss Quadrature. Compare your results with the true value of

$$
I=-0.346078:
$$

$$
\int_{1}^{3} \frac{\cos x}{1+e^{x}} x^{2} d x
$$

Numerical Integration

- Example 6 (cont'd)

We note that the limits of integration are from 1 to 3 , therefore, $a=1$ and $b=3$.
So, using Eq. 23 will result in

$$
\begin{aligned}
x & =\frac{b+a}{2}+\frac{b-a}{2} x_{G}=\frac{3+1}{2}+\frac{3-1}{2} x_{G} \\
& =2+x_{G}
\end{aligned}
$$

Therefore,

$$
d x=d x_{G}
$$

Numerical Integration

- Example 6 (cont'd)

And

$$
\int_{1}^{3} \frac{\cos x}{1+e^{x}} x^{2} d x=\int_{-1}^{1} \frac{\cos \left(2+x_{G}\right)}{1+e^{2+x_{G}}}\left(2+x_{G}\right)^{2} d x_{G}=\int_{-1}^{1} f\left(x_{G}\right) d x_{G}
$$

For 2-Point Gauss Quadrature, the following equation applies

$$
I=\int_{-1}^{1} f\left(x_{G}\right) d x_{G}=C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)
$$

Numerical Integration

- Example 6 (cont'd)

Table 2 gives

$$
\begin{array}{ll}
C_{1}=1 & x_{1}=-0.577350 \\
C_{2}=1 & x_{2}=0.577350
\end{array}
$$

We need to evaluate $f\left(x_{G}\right)$ for x_{1} and x_{2} :

$$
\begin{aligned}
f\left(x_{G}\right) & =\frac{\cos \left(2+x_{G}\right)}{1+e^{2+x_{G}}}\left(2+x_{G}\right)^{2} \\
f(-0.57735) & =\frac{\cos (2-0.57735)}{1+e^{2-0.57335}}(2-0.57735)^{2}=0.058030
\end{aligned}
$$

Numerical Integration

■ Example 6 (cont'd)

$$
f(0.57735)=\frac{\cos (2+0.57735)}{1+e^{2+0.57735}}(2+0.57735)^{2}=-0.396341
$$

For two-point Gauss Quadrature:

$$
\begin{aligned}
\int_{1}^{3} \frac{\cos x}{1+e^{x}} x^{2} & =\int_{-1}^{1} f\left(x_{G}\right) d x_{G}=C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right) \\
& =(1)(0.058030)+(1)(-0.396341) \\
& =-0.338311
\end{aligned}
$$

Numerical Integration

For 3-Point Gauss Quadrature, the following equation applies

$$
I=\int_{-1}^{1} f\left(x_{G}\right) d x_{G}=C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)+C_{3} f\left(x_{3}\right)
$$

Table 2 gives

$$
\begin{array}{ll}
C_{1}=0.555555 & x_{1}=-0.774597 \\
C_{2}=0.888888 & x_{2}=0 \\
C_{3}=0.555555 & x_{3}=0.774597
\end{array}
$$

Numerical Integration

- Example 6 (cont'd)

We need to evaluate $f\left(x_{G}\right)$ for x_{1}, x_{2} and x_{3} :

$$
f\left(x_{G}\right)=\frac{\cos \left(2+x_{G}\right)}{1+e^{2+x_{G}}}\left(2+x_{G}\right)^{2}
$$

$$
f(-0.774597)=\frac{\cos (2-0.774597)}{1+e^{2-0.774597}}(2-0.774597)^{2}=0.115399
$$

$$
f(0)=\frac{\cos (2+0)}{1+e^{2+0}}(2+0)^{2}=-0.198424
$$

$$
f(0.774597)=\frac{\cos (2+0.774597)}{1+e^{2+0.774597}}(2+0.774597)^{2}=-0.421893
$$

Numerical Integration

- Example 6 (cont'd)

For three-point Gauss Quadrature:

$$
\begin{aligned}
\int_{1}^{3} \frac{\cos x}{1+e^{x}} x^{2} & =\int_{-1}^{1} f\left(x_{G}\right) d x_{G}=C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)+C_{3} f\left(x_{3}\right) \\
& =(0.555555)(0.115399)+(0.888888)(-0.198424) \\
& =-0.346651
\end{aligned}
$$

Numerical Integration

- Example 6 (cont'd)

For 4-Point Gauss Quadrature, the following equation applies

$$
I=\int_{-1}^{1} f\left(x_{G}\right) d x_{G}=C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)+C_{3} f\left(x_{3}\right)+C_{4} f\left(x_{4}\right)
$$

Table 2 gives

$$
\begin{array}{lc}
C_{1}=0.347854 & x_{1}=-0.861136 \\
C_{2}=0.652145 & x_{2}=-0.339981 \\
C_{3}=0.652145 & x_{3}=0.339981 \\
C_{4}=0.347854 & x_{4}=0.861136
\end{array}
$$

Numerical Integration

- Example 6 (cont'd)

We need to evaluate $f\left(x_{G}\right)$ for x_{1}, x_{2}, x_{3}, and x_{4} :
$f\left(x_{G}\right)=\frac{\cos \left(2+x_{G}\right)}{1+e^{2+x_{G}}}\left(2+x_{G}\right)^{2}$
$f(-0.861136)=\frac{\cos (2-0.861136)}{1+e^{2-0.861136}}(2-0.861136)^{2}=0.131684$
$f(-0.339981)=\frac{\cos (2-0.339981)}{1+e^{2-0.339981}}(2-0.339981)^{2}=-0.039228$
$f(0.339981)=\frac{\cos (2+0.339981)}{1+e^{2+0.39981}}(2+0.339981)^{2}=-0.334635$
$f(0.861136)=\frac{\cos (2+0.861136)}{1+e^{2+0.861136}}(2+0.861136)^{2}=-0.425632$

Numerical Integration

- Example 6 (cont'd)

For four-point Gauss Quadrature:

$$
\begin{aligned}
\int_{1}^{3} \frac{\cos x}{1+e^{x}} x^{2}= & \int_{-1}^{1} f\left(x_{G}\right) d x_{G}=C_{1} f\left(x_{1}\right)+C_{2} f\left(x_{2}\right)+C_{3} f\left(x_{3}\right)+C_{4} f\left(x_{3}\right) \\
= & (0.347854)(0.131684)+(0.652145)(-0.039228) \\
& +(0.652145)(-0.334635)+(0.347854)(-0.425632) \\
= & -0.346064
\end{aligned}
$$

Numerical Integration

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

Example 6 (cont'd)
Comparison:

	Gauss Quadrature			True
	$n=2$	$n=3$	$n=4$	
I	-0.338311	-0.346651	-0.346064	-0.346078
$\%$ error	2.24	0.166	0.004	0.0

	Numerical Integration $\int_{1}^{3} \frac{\cos x}{1+e^{x}} x^{2} d x$ - Comparison Among the Methods												
	Gaus Quadature			. 0.34678		Traperoidal Rule						${ }^{\text {nem }}$	
	$n=2$	$n=3$	${ }_{n=4}$				$n=$		$n=5$				
	831	${ }^{0.346551}$. 0.36064						0.3492			${ }^{\text {0.346078 }}$	
	224	0.166	0.004				2.61		0.62			. 0	
	Simpon' 3 3/ Rule			True		Simpson's 1/3 Rule							
	0.30033	235 0.3461	60078				S6982	${ }^{0.364}$		-0366			
	1.23	0.016		. 0	\%		151	0.04		0.001		${ }^{0.0}$	

