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Numerical Integration

� Gauss Quadrature
� The methods for numerical integration (i.e., 

Trapezoidal and Simpson�s rules) that 
were discussed previously are based on 
evenly spaced function value.

� Consequently, the location of the base 
points used in these equations was 
predetermined or fixed.
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� Gauss Quadrature
� For example, the trapezoidal rule is based 

on taking the area under the traight line 
connecting the function values at the ends 
of the integration interval.

� In reference to Figure 1, the trapezoidal 
rule can be expressed as
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� Gauss Quadrature

x

f(x)

f(b)

f(a)

ba

( ) ( ) ( )
2

  Area afbfab +−=
Figure 1



3

© Assakkaf

Slide No. 158

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7e.  DIFFERENTIATION AND INTEGRATION
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� Gauss Quadrature
� Because the trapezoidal rule requires that 

the line pass through the ends points (or 
called the pivotal points), there are cases 
where the formula results in a large error 
as shown in Figure 1.

� If we remove the constraint of fixed base 
points, then we can evaluate the area 
under a straight line that connects any two 
points on the curve (see Figure 2).
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Figure 2
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� Gauss Quadrature
� If these two points are positioned wisely, 

then a straight line can defined that would 
balance the positive and negative errors as 
shown in Figure 2.

� In this case, the estimate of the integral will 
improve tremendously.

� This basic concept is the heart of  the 
Gauss Quadrature techniques
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� Gauss Quadrature
� Before describing Gauss�s approach, it 

would be proper to derive the trapezoidal 
formula using the method of undetermined 
coefficients that will be employed in 
deriving the Gauss quadrature.

� Developing the trapezoidal method in this 
approach will make easier to understand 
the development of Gauss quadrature later 
on.
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� Gauss Quadrature
� Deriving Trapezoidal Rule using the 

Method of Undetermined Coefficients

Eq 1 can be expressed as

( ) ( ) ( ) ( )
2

afbfabdxxfI
b

a

+−≈= ∫ (1)

( ) ( ) ( )bfCafCdxxfI
b

a
21 +≈= ∫ (2)
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� Gauss Quadrature
� Deriving Trapezoidal Rule using the 

Method of Undetermined Coefficients
Where C1 and C2 are constant to be 
determined.
We note that the trapezoidal rule should 
provide exact results when the function being 
integrated is a constant or straight line.
Two simple equations that represent these 
cases are f(x) = 1 and f(x) = x.
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� Gauss Quadrature
� Deriving Trapezoidal Rule

x

f(x)

f(x) = 1

2
ab −( )

2
ab −−

f(x) = x

f(x)

x
2

ab −

( )
2

ab −−

Figure 3

© Assakkaf

Slide No. 165

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7e.  DIFFERENTIATION AND INTEGRATION

Numerical Integration

� Gauss Quadrature
� Deriving Trapezoidal Rule

If f(x) = 1, then f(a) = f(b) = 1 in Equation 2
And after changing the limits of integration of Eq. 

2, the following equalities should hold:
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� Deriving Trapezoidal Rule
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� Gauss Quadrature
� Deriving Trapezoidal Rule

If f(x) = x, then f(a) = -(b - a)/2 and f(b) = (b - a)/2 in 
Equation 2.

And after changing the limits of integration of Eq. 
2, the following equality should hold:
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� Gauss Quadrature
� Deriving Trapezoidal Rule
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� Gauss Quadrature
� Deriving Trapezoidal Rule

Equations 3 and 4 can be solved 
simultaneously for the constants C1 and C2 as 
follows:

0
22

                     

21
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� Gauss Quadrature
� Deriving Trapezoidal Rule

But (b � a ) cannot be zero, therefore,

1221 0 CCCC =⇒=+−

21
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� Gauss Quadrature
� Deriving Trapezoidal Rule

Substituting the obtained values of the constants 
C1 and C2 into Equation 2, yields the 
Trapezoidal formula

( ) ( )

( ) ( )

( ) ( ) ( )
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Trapezoidal Formula
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature 

Formula
As was the case for the derivation of 
trapezoidal rule, two-point gauss quadrature 
formula can be developed in a similar manner 
using the following form:

( ) ( )2211 xfCxfCI +≈ (6)
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature

Formula
� However, in contrast to the trapezoidal rule that 

used fixed end points a and b, the function 
arguments x1 and x2 are not fixed at the end 
points, but rather are unknown at this point as 
shown in Figure 4.

� In this case, we have a total of four unknowns 
that need to be evaluated.
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� Gauss Quadrature
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature

Formula
� Note that in the figure, the limits of the 

integration are from �1 to 1.
� This was intentionally done to simplify the 

mathematics and to make the formulation as 
general as possible as we will see later.
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature

Formula
� In order to determine the four unknowns C1, C2, 

x1, and x2, we need to define four conditions as 
follows:
Equation 6 should fit the integral with constant, 
linear, parabolic, and cubic functions, that is

x3x2x1f(x)
CubicParabolicLinearConstantTable 1
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� Gauss Quadrature
� With respect to Eq. 6 and Table 1, the following 

set of equations needs to be solved:
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� Gauss Quadrature
� Eq. 7 can be expressed as follows:
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature

Formula
� From Eq. 8
� And by substituting C2 into Eq. 9, yields

12 2 CC −=
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� Gauss Quadrature
� When x1 of Eq. 12 is substituted in Equation 10, 

this equation (Eq.10) becomes 

( ) ( )
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature

Formula
� Substituting x1 of Eq. 12 into Eq. 11 gives
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature

Formula
� x2 cannot be zero and C1 cannot be 2 in 

Equation 14, therefore Equation 14 implies that

(15)
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� Gauss Quadrature
� Derivation of Two-Point Gauss Quadrature

Formula
� Substituting for C1 in Eq.8 and in Eq.13 gives

� And from Eq. 11  
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� Two-Point Gauss Quadrature Formula
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� Higher-Point Gauss Quadrature
Formulas
� Other higher point formulas can be 

developed in the same manner.
� As expected, the higher the Gauss 

Quadrature formula is , the higher the 
accuracy that can be obtained.

� The equations needed to determine the 
factors can be given in a compact form as
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� Higher-Point 
Gauss Quadrature
Formulas

( ) ( )

( ) ( ) 0
2

11

even is  if  
1k

2
odd is  if        0

                                      

1
11

                    

0 

0 

2 1

22
1212

22
12

11

11
22

22
2
11

1

1

222
22

2
11

1

1-

11
22

1
11

1

1-

00
22

0
11

=−−+=+++







+
=

+
−−+=+++

==+++

==+++

==+++

−−−

++

−
∫

∫

∫

n
xCxCxC

k

k
k

xCxCxC

dxxxCxCxC

dxxxCxCxC

dxxCxCxC

nn
n

nn
nn

kk

nn

nn

nn

nn

L

L

M

L

L

L

(17)

© Assakkaf

Slide No. 187

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7e.  DIFFERENTIATION AND INTEGRATION

Numerical Integration

� Higher-Point Gauss Quadrature
Formulas

The higher-point formula can be developed 
in the general form

( ) ( ) ( ) ( )nn xfCxfCxfCdxxfI +++== ∫
−

L2211

1
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Table 2
Gauss Quadrature
Weights and 
Coefficients

Number of 
Points Weighting Factors Function Arguments 

2 C1 = 1.000000000 
C2 = 1.000000000 

x1 =  - 0.577350269 
x2 =    0.577350269 

3 
C1 = 0.555555556 
C2 = 0.888888889 
C3 = 0.555555556 

x1 =  - 0.774596669 
x2 =    0.000000000 
x3 =    0.774596669 

4 

C1 = 0.347854845 
C2 = 0.652145155 
C3 = 0.652145155 
C4 = 0.347854845 

x1 =  - 0.861136312 
x2 =  - 0.339981044 
x3 =    0.339981044 
x4 =    0.861136312 

5 

C1 = 0.236926885 
C2 = 0.478628670 
C3 = 0.568888889 
C4 = 0.478628670 
C5 = 0.236926885 

x1 =  - 0.906179846 
x2 =  - 0.538469310 
x3 =    0.000000000 
x4 =    0.538469310 
x5 =    0.906179846 

6 

C1 = 0.171324492 
C2 = 0.360761573 
C3 = 0.467913935 
C4 = 0.467913935 
C5 = 0.360761573 
C6 = 0.171324492 

x1 =  - 0.932469514 
x2 =  - 0.661209386 
x3 =  - 0.238619186 
x4 =    0.238619186 
x5 =    0.661209386 
x6 =    0.932469514 
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� How to Apply Gauss Quadrature
� Transformation of variables

� It was noticed in Eqs.16 and 18 that the limits 
of integration are from �1 to 1.

� This was done intentionally to simplify the 
mathematics and to make the formulation as 
general as possible.

� A simple change of variable can be used to 
translate other limits of integration into this 
form.
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� How to Apply Gauss Quadrature
� Transformation of variables

� This can done by assuming a new variable w is 
related to the original variable x in a linear 
fashion as

� If the lower limit, x = a, this corresponds to
GBxAx += (19)

1−=Gx
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� How to Apply Gauss Quadrature
� Transformation of variables

� These values can be substituted into Eq. 19 to 
give

� Similarly, the upper limit x = b correspond to 

)1(−+=
+=

BAa
BxAx G

1=Gx

(20)
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� How to Apply Gauss Quadrature
� Transformation of variables

� These values can be substituted into Eq. 19 to 
give

� Solving Eqs. 20 and 21 simultaneously, gives
)1(BAb

BxAx G

+=
+=

(21)

2
       and       

2
abBabA −=+= (22)
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� How to Apply Gauss Quadrature
� Transformation of variables

� Substituting for A and B into Eq. 19, yields the 
following transformation equation:

� And this equation can be differentiated to give

Gxababx
22
−++=

Gdxabdx
2
−=

(23)

(24)
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Transformed FunctionOriginal Function

( )∫≈
b

a

dxxfI  

( )∫
−

≈
1

1

 GG dxxfI
Gxababx

22
−++=

Gdxabdx
2
−=

Gauss Quadrature Transformation
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� Example 6
Evaluate the following integral using 2, 3, 
and 4-point Gauss Quadrature.  Compare 
your results with the true value of
I = -0.346078:

∫ +

3

1

2

1
cos dxx

e
x
x
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� Example 6 (cont�d)
We note that the limits of integration are 
from 1 to 3, therefore, a = 1 and b = 3.
So, using Eq. 23 will result in

Therefore,
G

GG

x

xxababx

+=

−++=−++=

2   
2

13
2

13
22

Gdxdx =
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� Example 6 (cont�d)
And

For 2-Point Gauss Quadrature, the following 
equation applies

( )( ) ( )∫∫∫
−−

+ =+
+

+=
+

1

1

1

1

2
2

3

1

2  2
1

2cos
1
cos

GGGGx
G

x dxxfdxx
e

xdxx
e
x

G

( ) ( ) ( )2211

1

1

xfCxfCdxxfI GG +== ∫
−
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� Example 6 (cont�d)
Table 2 gives

We need to evaluate f(xG) for x1 and x2:

577350.0               1
577350.0               1

22

11

==
−==

xC
xC

( ) ( )( )2
2 2

1
2cos

Gx
G

G x
e

xxf
G

+
+

+= +

( ) ( )( ) 058030.057735.02
1

57735.02cos57735.0 2
57735.02 =−

+
−=− −e

f
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� Example 6 (cont�d)

For two-point Gauss Quadrature:

( ) ( )( ) 396341.057735.02
1

57735.02cos57735.0 2
57735.02 −=+

+
+= +e

f

( ) ( ) ( )

( ) ( )
338311.0                

396341.0)1(058030.0)1(                
1
cos

2211

1

1

3

1

2

−=
−+=

+==
+ ∫∫

−

xfCxfCdxxfx
e
x

GGx
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� Example 6 (cont�d)
For 3-Point Gauss Quadrature, the following 

equation applies

Table 2 gives

( ) ( ) ( ) ( )332211

1

1

xfCxfCxfCdxxfI GG ++== ∫
−

774597.0                555555.0
0               888888.0

774597.0               555555.0

33

22

11

==
==

−==

xC
xC
xC
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� Example 6 (cont�d)
We need to evaluate f(xG) for x1, x2 and x3:

( ) ( )( )2
2 2

1
2cos

Gx
G

G x
e

xxf
G

+
+

+= +

( ) ( )( )

( ) ( )( )

( ) ( )( ) 421893.0774597.02
1

774597.02cos774597.0

198424.002
1

02cos0

115399.0774597.02
1

774597.02cos774597.0

2
774597.02

2
02

2
774597.02

−=+
+

+=

−=+
+

+=

=−
+

−=−

+

+

−

e
f

e
f

e
f
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� Example 6 (cont�d)
For three-point Gauss Quadrature:

( ) ( ) ( ) ( )

( ) ( )
( )

346651.0                
421893.0)555555.0(                                                       
198424.0)888888.0(115399.0)555555.0(                

1
cos

332211

1

1

3

1

2

−=
−+
−+=

++==
+ ∫∫

−

xfCxfCxfCdxxfx
e
x
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� Example 6 (cont�d)
For 4-Point Gauss Quadrature, the following 

equation applies

Table 2 gives

( ) ( ) ( ) ( ) ( )44332211

1

1

xfCxfCxfCxfCdxxfI GG +++== ∫
−

861136.0                347854.0
339981.0                652145.0
339981.0               652145.0
861136.0               347854.0

44

33

22

11

==
==

−==
−==

xC
xC
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xC



26

© Assakkaf

Slide No. 204

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7e.  DIFFERENTIATION AND INTEGRATION

Numerical Integration

� Example 6 (cont�d)
We need to evaluate f(xG) for x1, x2, x3,and x4:
( ) ( )( )2

2 2
1

2cos
Gx

G
G x

e
xxf
G

+
+

+= +

( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( ) 425632.0861136.02
1

861136.02cos861136.0

334635.0339981.02
1

339981.02cos339981.0

039228.0339981.02
1

339981.02cos339981.0

131684.0861136.02
1

861136.02cos861136.0

2
861136.02

2
339981.02

2
339981.02

2
861136.02

−=+
+

+=

−=+
+

+=

−=−
+

−=−

=−
+

−=−

+

+

−

−

e
f

e
f

e
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e
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� Example 6 (cont�d)
For four-point Gauss Quadrature:

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

346064.0                

)425632.0)(347854.0(334635.0)652145.0(                  
039228.0)652145.0(131684.0)347854.0(                

1
cos

34332211

1

1

3

1

2

−=

−+−+
−+=

+++==
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−

xfCxfCxfCxfCdxxfx
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x
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� Example 6 (cont�d)
Comparison:

0.00.0040.1662.24
%

error

-0.346078-0.346064-0.346651-0.338311I
n = 4n = 3n = 2

True
Gauss Quadrature
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� Comparison Among the Methods

0.00.150.622.61
%

error

-0.346078-0.345543-0.343924-0.337049I
n = 9n = 5n = 3

True
Trapezoidal Rule

0.00.150.622.61
%

error

-0.346078-0.345543-0.343924-0.337049I
n = 9n = 5n = 3

True
Trapezoidal Rule

0.00.0010.0403.151
%

error

-0.346078-0.346083-0.346215-0.356982I

n = 9n = 5n = 3
True

Simpson�s 1/3 Rule

0.00.0010.0403.151
%

error

-0.346078-0.346083-0.346215-0.356982I

n = 9n = 5n = 3
True

Simpson�s 1/3 Rule

0.00.0161.23
%

error

-0.346078-0.346135-0.350335I

n = 7n = 4
True

Simpson�s 3/8 Rule

0.00.0161.23
%

error

-0.346078-0.346135-0.350335I

n = 7n = 4
True

Simpson�s 3/8 Rule

0.00.0040.1662.24
%

error

-0.346078-0.346064-0.346651-0.338311I
n = 4n = 3n = 2

True
Gauss Quadrature

0.00.0040.1662.24
%

error

-0.346078-0.346064-0.346651-0.338311I
n = 4n = 3n = 2

True
Gauss Quadrature

∫ +

3

1

2

1
cos dxx

e
x
x


