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— The methods for numerical integration (i.e.,
Trapezoidal and Simpson’s rules) that
were discussed previously are based on
evenly spaced function value.

— Consequently, the location of the base
points used in these equations was
predetermined or fixed.
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— For example, the trapezoidal rule is based
on taking the area under the traight line
connecting the function values at the ends
of the integration interval.

— In reference to Figure 1, the trapezoidal
rule can be expressed as

T M= (b—a) O (@)
]—;'.f(x)dx~(b—a)# (1)
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— Because the trapezoidal rule requires that
the line pass through the ends points (or
called the pivotal points), there are cases
where the formula results in a large error
as shown in Figure 1.

— If we remove the constraint of fixed base
points, then we can evaluate the area
under a straight line that connects any two
points on the curve (see Figure 2).
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— If these two points are positioned wisely,
then a straight line can defined that would
balance the positive and negative errors as
shown in Figure 2.

— In this case, the estimate of the integral will
improve tremendously.

— This basic concept is the heart of the
Gauss Quadrature techniques
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— Before describing Gauss’s approach, it
would be proper to derive the trapezoidal
formula using the method of undetermined
coefficients that will be employed in
deriving the Gauss quadrature.

— Developing the trapezoidal method in this
approach will make easier to understand
the development of Gauss quadrature later
on.
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z:jf(x)dxz(b_a)w (1)
Eq 1 can be expressed as
b
2
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— Deriving Trapezoidal Rule using the
Method of Undetermined Coefficients

Where C, and C, are constant to be
determined.

We note that the trapezoidal rule should
provide exact results when the function being
integrated is a constant or straight line.

Two simple equations that represent these
cases are f(x) =1 and fix) = x.
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Figure 3
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fx)=x
A
S =1
~(b-a)
2
> X
b—a
2
> X
- (b - a) b—a
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— Deriving Trapezoidal Rule
If ix) =1, then fla) =f(b) = 1 in Equation 2
And after changing the limits of integration of Eq.
2, the following equalities should hold:
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(b—a)/2
[ (@) =C fla)+C, 1 (b)
—(b-1)/2
=G 1)+G ()
=C,+C,
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(b—a)/2 (b—a)/2
C +C, = j Flx)dx = j(l)dx
~(b-a)/2 ~(b-a)/2

b-ay2 _b—a b-a

C,+C,= x|_(b_a)/2 == + 5
Therefore,
C,+C,=b-a 3)
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— Deriving Trapezoidal Rule
If fix) =x, then fla)=-(b - a)/2 and f(b)= (b - a)/2 in
Equation 2.
And after changing the limits of integration of Eq.
2, the following equality should hold:

(b=a)/2

[ ) =C f(a)+C,f ()
—(b-1)/2
_C, —(b—a)+c2 b—a
2 2
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b —a b e (b—a)/2 (b—a)/2

-C, +C, = J.f(x)dx: dex

2 2 —(b=a)/2 —(b-a)/2

b—a)/

PR S e

2 2 2 —(b-a)/2 8 8

Therefore,
b—a b—a
-C, TR C, 5= 0 4)
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— Deriving Trapezoidal Rule
Equations 3 and 4 can be solved
simultaneously for the constants C, and C, as
follows:
C, +C,=b-a

SN CNC
2 2

(b-a)-C,+C,)=0
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But (b — a ) cannot be zero, therefore,
~C,+C,=0=>C, =C,
C,+C,=b-a
C,+C =b-a

or
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Substituting the obtained values of the constants
C, and C, into Equation 2, yields the
Trapezoidal formula

1=C,f(a)+C,f(b)
S P

2 2

«—Trapezoidal Formula
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— Derivation of Two-Point Gauss Quadrature
Formula
As was the case for the derivation of
trapezoidal rule, two-point gauss quadrature
formula can be developed in a similar manner
using the following form:
I = le(x1)+czf(x2) (6)
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* However, in contrast to the trapezoidal rule that
used fixed end points @ and b, the function
arguments x, and x, are not fixed at the end
points, but rather are unknown at this point as
shown in Figure 4.
* In this case, we have a total of four unknowns
that need to be evaluated.
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— Derivation of Two-Point Gauss Quadrature
Formula

* Note that in the figure, the limits of the
integration are from —1 to 1.

 This was intentionally done to simplify the
mathematics and to make the formulation as
general as possible as we will see later.
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* In order to determine the four unknowns C,, C,,

x,, and x,, we need to define four conditions as
follows:

Equation 6 should fit the integral with constant,
linear, parabolic, and cubic functions, that is

Table 1 Constant | Linear | Parabolic | Cubic

fx) 1 X x2 x3
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» With respect to Eqg. 6 and Table 1, the following
set of equations needs to be solved:
le(xl)+ sz(xz)z J(l)dx =2

-1
1

Cf (5 )+ Cof (x,)= Jx dx=0
| (7
le(xl)+ sz(xz): sz dx:%

Cf (6 )+Cof ()= .l[x3 dx=0

-1
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* Eq. 7 can be expressed as follows:

CO+CMH=2 @
Cx, +Cx, =0 (9)
2
Cxl +C,x; = 3 (10)
Cle +C2x§ =0 (11)
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— Derivation of Two-Point Gauss Quadrature
Formula
« FromEq.8 C,=2-C
» And by substituting C, into Eq. 9, yields

Cx,+(2-C)x,=0

or
Y = _(2_C1)x2 _ (Cl —2))62
R (12)
1 1
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* When x, of Eq. 12 is substituted in Equation 10,

this equation (Eq.10) becomes

Clxl2 + C2x22 =§

2 2

C - 2 X 2 2

G ( : 2) 2 +(2_C1)x2 =3

G, 3

. 2 .
Solving for x5, gives
G
x; = (13)
6-3C,
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Formula
* Substituting x, of Eg. 12 into Eq. 11 gives

Cx; +C,x; =0
— 3 .3
Clw+(2—cl)x§:0

1
which is equivalent to

s -2l -2F-ctl=0  (14)
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* x, cannot be zero and C, cannot be 2 in
Equation 14, therefore Equation 14 implies that

(C, -2V -C*=0
C}—4C,+4-C' =0
—4C, =4

@‘d OF,

or

C =1 (15)
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* Substituting for C, in Eq.8 and in Eq.13 gives

C,=1

X, = G L 15773503
6-3C, \6-31) 3

* And from Eq. 11

1
X, =—x, =———=-0.5773503
V3
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1= [ (M=o )+ Co ()

1 1 iy
I=[fE)dx=f|-—= |+ | =
i V3 V3
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Formulas

— Other higher point formulas can be
developed in the same manner.

— As expected, the higher the Gauss
Quadrature formula is , the higher the
accuracy that can be obtained.

— The equations needed to determine the
factors can be given in a compact form as
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Cof +Cpx) -+ C,x) = [1dx =2
-1

1
Cxl+Cyxy+--+C,x) =dex=0
-1

Gauss Quadrature
Formulas Col + Gy +o+ o =[x dv =0

n
-1

(17)
(+1ym-1 _(_ 1)k+1
k+1
0 if kisodd

Clxl2 +C2x22 +---+Cnx: =
12 ifkiseven
k+1

_ (+1)2n_(_1)2n o

2n
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Formulas

The higher-point formula can be developed
in the general form

I=[ (e =Cf(x)+Cof(ey) 4+ C, f(x,)
_ (18)
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Poi Weighting Factors Function Arguments
oimnts

) C1 = 1.000000000 x1 = -0.577350269

C; = 1000000000 x, = 0.577350269

Table 2 C1=0.555555556 x1= -0.774596669

T 3 C, = 0.888888889 x,= 0.000000000

Gauss Quadrature C; = 0.555555556 x= 0.774596669

. C\ = 0.347854845 x1 = - 0.861136312

Welghts and 4 C>=0.652145155 X = - 0339981044

. C;=0.652145155 x;= 0.339981044

Coefficients C, = 0.347854845 x= 0.861136312

C1 = 0.236926885 x1= - 0.906179846

C, = 0.478628670 X = -0.538469310

5 C;5 = 0.568888889 x3= 0.000000000

Cy = 0.478628670 x= 0.538469310

Cs =0.236926885 xs=_ 0.906179846

C1 =0.171324492 x1 = -0.932469514

C,=0.360761573 X = -0.661209386

p C; =0.467913935 x; = -0.238619186

Cy=0.467913935 x= 0.238619186

Cs =0.360761573 xs= 0.661209386

Cs =0.171324492 xs= 0.932469514
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— Transformation of variables

* It was noticed in Eqs.16 and 18 that the limits
of integration are from -1 to 1.

» This was done intentionally to simplify the
mathematics and to make the formulation as
general as possible.

* A simple change of variable can be used to

translate other limits of integration into this
form.
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— Transformation of variables
* This can done by assuming a new variable w is
related to the original variable x in a linear
fashion as
x=A+ Bx, (19)
* If the lower limit, x = a, this corresponds to
ENCE 203 — CHAPTER 7e. DIFFERENTIATION AND INTEGRATION S”iff:fg
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— Transformation of variables

* These values can be substituted into Eq. 19 to
give
x=A+ Bx,g

a=A+B(-1)  (20)

 Similarly, the upper limit x = b correspond to
x. =1
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— Transformation of variables
* These values can be substituted into Eq. 19 to
give
x=A+Bx,
b=A+B() (21)
» Solving Egs. 20 and 21 simultaneously, gives
b+a b—a
A= 5 and B= 5 (22)
Numerical Integration
SR,

i @ How to Apply Gauss Quadrature

— Transformation of variables

 Substituting for 4 and B into Eq. 19, yields the
following transformation equation:

b+a b-a
x:

X 23
G
5 5 (23)
* And this equation can be differentiated to give
b—a
dx = dx,. (24)
2
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Gauss Quadrature Transformation

Original Function Transformed Function

Iz}jf(x)dx

1
x=b+(l+b—(l % ]z:'.lf(xG)de

2 2

X
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Evaluate the following integral using 2, 3,
and 4-point Gauss Quadrature. Compare
your results with the true value of

I =-0.346078:

3
J‘COSX

11+ex

2
x“dx

© Assakkaf
ENCE 203 — CHAPTER 7e. DIFFERENTIATION AND INTEGRATION Slide No. 195

21



Numerical Integration

&Y OF Ay
SO
& M’*’%
v N
5/ & 5 I . BN el . . N I
A ./ *A.J Clark School of Engineering « Department of Civil and Environmental Engineering

e

m Example 6 (cont’'d)

We note that the limits of integration are
from 1 to 3, therefore, a =1 and b = 3.

So, using Eq. 23 will result in

b+a b-a 3+1 3-1
xX= + X; = + X
2 2 2 2

=2+x;

Therefore,
dx =dx,
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1

tcosx cos(2+x,,) 2 1
FEt e [ 0 Y, - o)
o I+eme b

For 2-Point Gauss Quadrature, the following
equation applies

[:jf(xc )de :le(x1)+ sz(xz)
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Table 2 gives
¢ =1 x, =—0.577350
C,=1 x, =0.577350

We need to evaluate f(x) for x, and x,:
Flag)= )

1 + ez+xG

cos(2-0.57735)

1+ 62—0.57735

£(=0.57735)=

(2-0.57735) =0.058030
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cos(2+0.57735)

2+0.57735
1+e”"

£(0.57735)=

For two-point Gauss Quadrature:

3
J' COS X

1+e"

2 = [ £l g = Cf(a  Cuf ()

= (1)(0.058030)+ (1)(~ 0.396341)
=10.338311

1

(2+0.57735) =-0.396341
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For 3-Point Gauss Quadrature, the following
equation applies

= J-f(xc)de = le(x1)+ sz(x2)+ C3f(x3)
Table 2 gives

C, =0.555555 x, =—0.774597
C, =0.888888 x,=0
C, =0.555555 x, =0.774597
© Assakkaf
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We need t(o eva)luate Sflxe) for xy, x, and x;:
cos(2+x
fxg)= I—MGG(2+XG)2
+e
£(C0.774597)= 52 _2(3;)773:5‘95797) (2-0.774597)* =0.115399
=
1(0)= %(2 +0Y =-0.198424
e
F(0.774507)= 52 +£;)7777:5‘95797) (2+0.774597) =—0.421893
=
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For three-point Gauss Quadrature:

[0 = [ (g Mg = Cf ()4 Cof (0,)+ €, f ()
1+¢ e
=(0.555555)(0.115399)+ (0.888888)(— 0.198424)
+(0.555555)(—0.421893)

1

=-0.346651
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“ix @ Example 6 (cont'd)

For 4-Point Gauss Quadrature, the following
equation applies

I :jf(xc )de :le(x1)+ sz(xz )+ C3f(x3)+C4f(x4)

Table 2 gives
C,=0.347854 x, =-0.861136
C, =0.652145 x, =—-0.339981
C, =0.652145 x, =0.339981
C,=0.347854 x,=0.861136
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< m Example 6 (cont'd)
We need to evaluate f(x) for x,, x,, xy,and x,:
7e)= cos(2+x,)

T l4ette

@‘d OF,

(2 +xg )2

cos(2—0.861136)

£(-0.861136)= (2-0.861136) =0.131684

6270.861136
£(-0.339981)= %@ ~0.339981)" =-0.039228
=
£(0.339981)= W(2+ 0.339981) =—0.334635
+e
£(0.861136)= ‘W (2+0.861136) =—0.425632
e
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m Example 6 (cont’'d)
For four-point Gauss Quadrature:
3 1
COS X
J.1+ex xt = J.f(xc )de = le(x1)+ sz(x2)+ Csf(x3)+ C4f(x3)
1 -1
=(0.347854)(0.131684 )+ (0.652145)(~ 0.039228)
+(0.652145)(~0.334635)+(0.347854)(—0.425632)
=1-0.346064
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m Example 6 (cont’d)

Comparison:
Gauss Quadrature
True
n=>2 n=>3 n=4
1 -0.338311 | -0.346651 | -0.346064 | -0.346078
%
ol 224 0.166 0.004 0.0
error
3
° ° COS X
Numerical Integration | i
e
1
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m Comparison Among the Methods

Gauss Quadrature . Trapezoidal Rule True
Tue - = =
n=2 n=3 n=4 n=3 n=35 n=9
I | -0.338311 | -0.346651 | -0.346064 | -0.346078 I | -0337049 | -0.343924 | 0345543 | -0.346078
%
%
° 2.24 0.166 0.004 0.0 error 2.61 0.62 0.15 0.0
error
Simpson’s 3/8 Rule Simpson’s 1/3 Rule
True True
n=4 n=17 n=3 n=>5 n=9
I -0.350335 | -0.346135 -0.346078 I -0.356982 | -0.346215 | -0.346083 | -0.346078
% %
° 1.23 0.016 0.0 ° 3.151 0.040 0.001 0.0
error error
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