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Numerical Integration

� In calculus, integration is used to find 
the area under the curve.

� In engineering applications, the area 
under the curve can have physical 
interpretation and implications.

� For example, it can mean finding the 
total energy or rate of flow Q through a 
cross section of a river.
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� Area Under the Curve
y = f(x)
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� Examples

( )
( ) ( )

cxex

dxxexdxxfydx

xexxfy

x

x

x

+−−=

+−==⇒

+−==

∫∫ ∫
cos

4
                             

sin                

sin

4

3

3

( ) ( )
2
1

2
1

1)(
1

0

21

0

1

0

=









+=+==

+==

∫∫
xxdxxdxxfI

xxfy



3

© Assakkaf

Slide No. 77

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7c.  DIFFERENTIATION AND INTEGRATION

Numerical Integration

� Need for Numerical Integration
In general, the function to be integrated will 

typically be in one of the following forms:
1. A simple continuous linear function such as a 

polynomial, an exponential, or trigonometric 
function, such as
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� Need for Numerical Integration
2. A complex non-linear continuous function that 

is difficult or impossible to integrate directly 
such as
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� Need for Numerical Integration
3. A tabulated continuous function where values 

of the independent variable x and f(x) are 
given at a number of discrete data points as 
is often the case with experimental or field 
data such as distance traveled by a car vs. 
time:

61033015050100D (ft)

1086420t (sec)
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� Need for Numerical Integration
� In the first case, the integral of a simple 

function may be computed analytically 
using calculus.

� For the second case, analytical solutions 
are often impractical and sometimes 
difficult or impossible to obtain.

� In these situations as well as in the third 
case, approximate methods must be used.
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� Need for Numerical Integration
� Pre computers and computational devices, 

a visually oriented approach were used to 
integrate tabulated data and complicated 
functions.

� In this approach, the function is plotted on 
a grid (see figure), and the number of 
boxes that approximate the area are 
counted.
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� Need for Numerical Integration
� This number is multiplied by the area of 

each box to give a rough estimate of the 
total area under the curve.

� This estimate can be refined at the 
expense of additional effort by using a finer 
grid.
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� Need for Numerical Integration
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� Need for Numerical Integration
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� Engineering Applications
� A surveyor might need to know the area of a 

piece of land bounded by a meandering stream 
and two roads
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� Engineering Applications
� A water-resource engineer might need to know 

the cross-sectional area of a river to calculate 
the rate of flow Q.

VAVdAQ == ∫
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� Engineering Applications
� A structural engineer might need to determine 

the net lateral force due to non-uniform wind 
blowing against a side of a tall building.
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� Integration Using Interpolating 
Polynomial

� The general form of an interpolating polynomial 
is given by

� This polynomial can be integrated analytically 
as follows:
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� Integration Using Interpolating 
Polynomial
� The Gregory-Newton method for deriving 

an interpolation formula can also be used 
to evaluate the integral of a function.

� Recall G-N method:
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� Integration Using Interpolating 
Polynomial

� The terms could be rearrange to form an nth-
order polynomial of the type

� This polynomial can be integrated analytically as
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� Example 1
Derive a second-degree interpolation 
polynomial to fit the following data points, 
and then using the fitted polynomial to 
approximate

Compare your result with that of the exact 
integral (i.e., x4/4).

2781f(x)
321x
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� Example 1 (cont�d)
� The general form of the interpolation 

polynomial is given by

� In our case it is
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� Example 1 (cont�d)
� We need to find the coefficients b0, b1, and 

b2.
� We notice that have three unknowns, n = 3 

, that require solving 3 simultaneous linear 
equations using the pair, xi and f(xi), of the 
given data as follows: 
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� Example 1 (cont�d)
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� Example 1 (cont�d)
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� Example 1 (cont�d)
� The solution of this set of equations yields

� Therefore, the interpolation polynomial is

� And its anti-derivative (integral) is
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� Example 1 (cont�d)
The result is
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� Example 1 (cont�d)
� Evaluation of the exact integral is as 

follows:

� In this example, the approximation is 
identical to the true value.

( ) ( ) ( ) 5.8
4

5.15.2
4

445.2

5.1

45.2

5.1

3
5.2

5.1

=−=== ∫∫
xxdxxf



14

© Assakkaf

Slide No. 99

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7c.  DIFFERENTIATION AND INTEGRATION

Numerical Integration

� The Trapezoidal Rule
� The trapezoidal rule approximates the area 

of a function defined by a set of discrete 
points by fitting a trapezoid to each pair of 
adjacent points that defines the dependent 
variable and summing the individual areas 
as shown in the figure.
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� The Trapezoidal Rule
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� The Trapezoidal Rule
� Derivation

� The trapezoidal rule can be derived by fitting a 
linear interpolating polynomial to each pair of 
points.

� Using, for example Gregory-Newton formula, 
an expression for a linear polynomial can be 
obtained as follows:
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� The Trapezoidal Rule
� Derivation

� If we denote the values of the two independent 
variables as xi and xi+1, then G-N formula gives
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� The Trapezoidal Rule
� Derivation
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� The Trapezoidal Rule
� Derivation

� Hence, the linear polynomial is given by
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� The Trapezoidal Rule
� Derivation

� Integrating Eq. 1 between two points, say a and 
b:
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� The Trapezoidal Rule
� Derivation

Or

Letting b = xi+1 and a = xi, results in
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� The Trapezoidal Rule
The trapezoidal rule can be used to 
approximate the integral between two 
points x1 and xn of a function.  It is given by
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� Geometric Interpretation the 
Trapezoidal Rule
� The trapezoidal rule can also be derived 

geometrically.
� The trapezoidal rule is equivalent to 

approximating the area of the trapezoid 
under the straight line connecting f(xi) and
f(xi+1) as shown in the following figure:



19

© Assakkaf

Slide No. 109

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7c.  DIFFERENTIATION AND INTEGRATION

Numerical Integration

� Geometric Interpretation the 
Trapezoidal Rule
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� Geometric Interpretation the 
Trapezoidal Rule
� Recall from geometry that the formula for 

computing the area of a trapezoid is the 
height times the average of the bases as 
shown in the figure.

� Therefore, the integral estimate can be 
represented as 

height average width ×≈I
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� Geometric Interpretation the 
Trapezoidal Rule
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� Example 2
Using the trapezoidal rule , estimate the 
area under the curve, that is

for the following function given in tabulated 
form:
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� Example 2 (cont�d)
Using Eq. 2,
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