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Numerical Differentiation

� Recall the forward, backward, and two-
step finite-difference formulas for 
numerical differentiation:
� Forward Difference
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� Backward Difference
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� Two-Step
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� Example 5 � Specific Heat Capacity
The specific heat capacity is an important 
element in thermodynamics processes.  
For a process in which the pressure is 
constant, the specific heat capacity, cp, 
equals the slope of the relationship 
between the specific enthalpy, h, and the 
temperature, T, as follows:  

dT
dhcp =

© Assakkaf

Slide No. 44

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 7b.  DIFFERENTIATION AND INTEGRATION

Numerical Differentiation

� Example 5 � Specific Heat Capacity
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� Example 5 (cont�d) � Specific Heat 
Capacity

At a temperature of T = 12000 F, the forward 
finite-difference will give
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� Example 5 (cont�d) � Specific Heat 
Capacity

At a temperature of T = 12000 F, the 
backward finite-difference will give
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� Example 5 (cont�d) � Specific Heat 
Capacity

At a temperature of T = 12000 F, the two-
step finite-difference will give
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� Example 5 (cont�d) � Specific Heat 
Capacity

At a temperature of T = 12000 F, the rate of 
change of cp can be approximated by the 
second derivative as follows:
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� Taylor Series Expansion and Numerical 
Differentiation
� The basic finite-difference equations, i.,e., 

forward and backward difference,  for 
differentiation result from the Taylor series 
expansion:
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� Taylor Series Expansion and Numerical 
Differentiation
Where
Taylor series can be rewritten with new 

symbols as
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� Taylor Series Expansion and Numerical 
Differentiation
� If we truncate Taylor series (Eq. 6) at the 

second term, the forward finite-difference 
formula for differentiation can be derived 
from Taylor series expansion as follows:
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� Taylor Series Expansion and Numerical 
Differentiation
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Eq. 9 is indeed the first approximation forward finite-difference
formula of the first derivative.
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� Second-Order Approximation for the 
First Derivative

If we truncate the Taylor series (Eq. 6) at 
the third term (at the second derivative), 
the result will be as follows:
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� Second-Order Approximation for the 
First Derivative

Equation 10 can be rearrange as
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� Second-Order Approximation for the 
First Derivative
� Equation 11 is the second-order 

approximation of the first derivative.
� However, the second-order approximation 

of the first derivative requires knowledge of 
the second derivative.

� So, we need an expression for the second-
order approximation in terms of the data 
points.
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� Second-Order Approximation for the 
First Derivative

If we let f�(x) be the first derivative of f(x)
with respect to x, then the forward 
difference approximation of the second 
derivative is given by
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� Second-Order Approximation for the 
First Derivative
But

and
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� Second-Order Approximation for the 
First Derivative

Substituting Eqs. 13 and 14 into Eq. 12 will 
provide the following results
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� Second-Order Approximation for the 
First Derivative
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Equation 15 is the first-order approximation of the second
derivative. 
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� Second-Order Approximation for the 
First Derivative
Bt substituting Eq. 15 into Eq. 11 
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� Second-Order Approximation for the 
First Derivative
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� In a similar manner, a forward 
difference, second-order approximation 
of the second derivative can be derived 
from Taylor series.

� Also, other formulas as provided in the 
following viewgraphs, for the first and 
second derivatives can be derived from 
Taylor series expansion.
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� First Derivative
� Forward Difference

� First-order Approximation

� Second-order Approximation
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� First Derivative
� Backward Difference

� First-order Approximation

� Second-order Approximation
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� First Derivative
� Two-Step Method

� First-order Approximation

� Second-order Approximation
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� Second Derivative
� Forward Difference

� First-order Approximation

� Second-order Approximation
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� Second Derivative
� Backward Difference

� First-order Approximation

� Second-order Approximation
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� Second Derivative
� Two-Step Method

� First-order Approximation

� Second-order Approximation
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� Example 6 � Evaporation Rates
A design engineer must make estimate of 
evaporation rates when the amount of 
needed water to meet irrigation demands is 
required.  One input to frequently used 
formula for estimating evaporation rates is 
the slope of the saturation vapor pressure 
curve at air temperature T.  The following 
data are collected to make such design 
estimates.
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� Example 6 (cont�d):
Using the second-
order approximation 
for the first derivative 
for forward, 
backward, and two-
step methods 
estimate the slope of 
the saturation vapor 
at T = 220C.
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� Example 6 � Evaporation Rates
Using forward difference of Eq. 19, the 
slope is as follows:
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� Example 6 � Evaporation Rates
Using backward difference of Eq. 21, the 
slope is as follows:
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� Example 6 � Evaporation Rates
Using backward difference of Eq. 23, the 
slope is as follows:
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