

Method of Undetermined Coefficients

- Example 6
- Develop a fourth-order interpolation polynomial for the following set of data, for which we know their original function, that is, $f(x)=x^{3}$.

x	0	1	2	3	4
$f(x)$	0	1	8	27	64

Method of Undetermined Coefficients

- Example 6 (cont'd)
- The general form of the interpolation polynomial is given by Eq. 4 as

$$
f(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots+b_{n} x^{n}
$$

- In our case it is

$$
f(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}
$$

Method of Undetermined Coefficients

■ Example 6 (cont'd)

- We need to find the coefficients $b_{0}, b_{1}, b_{2}, b_{3}$ and b_{4}.
- We notice that have five unknowns, $(n+1)=$ $4+1=4$, that require solving 5
simultaneous linear equations using the pair, x_{i} and $f\left(x_{i}\right)$, of the given data as follows:

Method of Undetermined Coefficients

- Example 6 (cont'd)

x	0	1	2	3	4
$f(x)$	0	1	8	27	64

$$
f(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}
$$

$$
0=b_{0}+b_{1}(0)+b_{2}(0)^{2}+b_{3}(0)^{3}+b_{4}(0)^{4}
$$

$$
1=b_{0}+b_{1}(1)+b_{2}(1)^{2}+b_{3}(1)^{3}+b_{4}(1)^{4}
$$

$$
8=b_{0}+b_{1}(2)+b_{2}(2)^{2}+b_{3}(2)^{3}+b_{4}(2)^{4}
$$

$$
27=b_{0}+b_{1}(3)+b_{2}(3)^{2}+b_{3}(3)^{3}+b_{4}(3)^{4}
$$

$$
64=b_{0}+b_{1}(4)+b_{2}(4)^{2}+b_{3}(4)^{3}+b_{4}(4)^{4}
$$

P

Method of Undetermined

 Coefficients- Example 6 (cont'd)
$b_{0} \quad=0$
$b_{0}+b_{1}+b_{2}+b_{3}+b_{4}=1$
$b_{0}+2 b_{1}+4 b_{2}+8 b_{3}+16 b_{4}=8$
$b_{0}+3 b_{1}+9 b_{2}+27 b_{3}+81 b_{4}=27$
$b_{0}+4 b_{1}+16 b_{2}+64 b_{3}+256 b_{4}=64$
$-\mathrm{OR}\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256\end{array}\right]\left[\begin{array}{l}b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ 8 \\ 27 \\ 64\end{array}\right]$

Method of Undetermined Coefficients

- Example 6 (cont'd)
- The solution of this set of equations yields

$$
\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

$$
f(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}
$$

- Therefore, the interpolation polynomial is

$$
f(x)=x^{3}
$$

Method of Undetermined Coefficients

- Example 6 (cont'd)
- We notice in this example that as the degree of the interpolation polynomial goes higher, the computational effort becomes complex.
- When the polynomial is of the same order as the function used to derive that data, the polynomial will provide errorless interpolated values, and will be exactly the same as the original function.

Gregory-Newton Interpolation

 Method-A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- The previous example shows that the fifth-order interpolation polynomial gives errorless interpolated values, and there was significant improvement in accuracy.
- Thus, it is usually tempting to try an interpolation polynomial of higher order to improve the accuracy.

Gregory-Newton Interpolation

 Method■ However, it should be recognized that the solution procedure becomes more complex as the order increases.

- The solution in this case would require more simultaneous equations to be solved for the coefficients.

Gregory-Newton Interpolation Method

- The Gregory-Newton Method provides a means of developing an n th-order interpolation polynomial without requiring the solution of a set of simultaneous linear equations.

Gregory-Newton Interpolation Method

- Gregory-Newton Formula

$$
\begin{align*}
f(x)=a_{1} & +a_{2}\left(x-x_{1}\right)+a_{3}\left(x-x_{1}\right)\left(x-x_{2}\right)+a_{4}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& +a_{5}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)+\cdots \tag{7}\\
& +a_{n}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)+a_{n+1}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)
\end{align*}
$$

Where
$x=$ independent variable
$x_{i}=n$ known values for $i=1,2, \ldots, n$
$a_{i}=n+1$ unknown coefficients for $i=1,2, \ldots,(n+1)$

Gregory-Newton Interpolation Method

Gregory-Newton Formula

- The $(n+1)$ coefficients can developed from a set of $(n+1)$ values of the depended variables as given in tabular form as

i	1	2	3	\cdots	n
x	x_{1}	x_{2}	x_{3}	\cdots	x_{n}
$f(x)$	$f\left(x_{1}\right)$	$f\left(x_{2}\right)$	$f\left(x_{3}\right)$	\cdots	$f\left(x_{n}\right)$

Gregory-Newton Interpolation Method

■ Gregory-Newton Formula

- If $x=x_{1}$, then $f(x)=f\left(x_{1}\right)$
for this pair of values, every term in Eq. 7
except a_{1} is zero, that is

$$
\begin{aligned}
f(x)=a_{1} & +a_{2}\left(x-x_{1}\right)+a_{3}\left(x-x_{1}\right)\left(x-x_{2}\right)+a_{4}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& +a_{5}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)+\cdots
\end{aligned}
$$

$f\left(x_{1}\right)=a_{1}+a_{2}\left(x_{1}-x_{1}\right)+a_{3}\left(x_{1}-x_{1}\right)\left(x_{1}-x_{2}\right)+a_{4}\left(x_{1}-\hat{x_{1}}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)$
$+a_{5}\left(x_{1}-x_{1}\right)\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)+\cdots$

Gregory-Newton Interpolation Method

- A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering
- Gregory-Newton Formula
- Therefore,

$$
\begin{equation*}
a_{1}=f\left(x_{1}\right) \tag{8}
\end{equation*}
$$

Gregory-Newton Interpolation Method

■ Gregory-Newton Formula

- If $x=x_{2}$, then $f(x)=f\left(x_{2}\right)$
for this pair of values, every term in Eq. 7 except a_{1} and a_{2} are zero, that is

$$
\begin{aligned}
f(x)=a_{1} & +a_{2}\left(x-x_{1}\right)+a_{3}\left(x-x_{1}\right)\left(x-x_{2}\right)+a_{4}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& +a_{5}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)+\cdots
\end{aligned}
$$

$$
\begin{aligned}
f\left(x_{2}\right)= & a_{1}+a_{2}\left(x_{2}-x_{1}\right)+a_{3}\left(x_{2}-x_{1}\right)\left(x_{2}-\not x_{2}\right)+a_{4}\left(x_{2}-x_{1}\right)\left(x_{2}-x_{2}\right)\left(x_{2}-x_{3}\right) \\
& +a_{5}\left(x_{2}-x_{1}\right)\left(x_{2}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)+\cdots
\end{aligned}
$$

Gregory-Newton Interpolation Method

- Gregory-Newton Formula
- Therefore,

$$
\begin{aligned}
f\left(x_{2}\right) & =a_{1}+a_{2}\left(x_{2}-x_{1}\right) \\
& =f\left(x_{1}\right)+a_{2}\left(x_{2}-x_{1}\right)
\end{aligned}
$$

OR

$$
\begin{equation*}
a_{2}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \tag{9}
\end{equation*}
$$

Gregory-Newton Interpolation Method

■ Gregory-Newton Formula

- If $x=x_{3}$, then $f(x)=f\left(x_{3}\right)$
for this pair of values, every term in Eq. 7 except a_{1}, a_{2} and a_{3} are zero, that is

$$
\begin{aligned}
f(x)=a_{1} & +a_{2}\left(x-x_{1}\right)+a_{3}\left(x-x_{1}\right)\left(x-x_{2}\right)+a_{4}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \\
& +a_{5}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)+\cdots
\end{aligned}
$$

$f\left(x_{3}\right)=a_{1}+a_{2}\left(x_{3}-x_{1}\right)+a_{3}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)+a_{4}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{3}\right)$

$$
+a_{5}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{3}^{0}\right)\left(x_{3}-x_{4}\right)+\cdots
$$

Gregory-Newton Interpolation Method

- Gregory-Newton Formula
- Therefore,

$$
\begin{aligned}
& f\left(x_{3}\right)=a_{1}+a_{2}\left(x_{3}-x_{1}\right)+a_{3}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right) \\
& f\left(x_{3}\right)=f\left(x_{1}\right)+\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\left(x_{3}-x_{1}\right)+a_{3}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)
\end{aligned}
$$

OR

$$
\begin{equation*}
a_{3}=\frac{f\left(x_{3}\right)-f\left(x_{1}\right)-\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}\left(x_{3}-x_{1}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \tag{10}
\end{equation*}
$$

Gregory-Newton Interpolation Method

- Gregory-Newton Formula
- The process can be repeated to solve the remaining coefficients.
- At each step a new pair of points is used with the values of a_{i} computed in previous step.
- Note that the Gregory-Newton method yields the same polynomial as the solution of the simultaneous equations used for the method of undetermined coefficients.

Gregory-Newton Interpolation Method

■ Gregory-Newton Formula

- Thus, it will give the same interpolated value and have the same accuracy,
- The advantage of the Gregory-Newton Method is that it does not require the solution of n simultaneous equations with n unknowns.

Gregory-Newton Interpolation

 Method

■ Example 7: G-N Method
Fit a quadratic polynomial for the following set of data using the Gregory-Newton interpolation method. Using this polynomial approximate the function $f(x)$ when x is equal to 2.2 and 2.8.

x	1	2	3
$f(x)$	1	8	27

Gregory-Newton Interpolation Method

A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Example 7 (cont'd): G-N Method

If $x=1$, then $f(x)=1$

$$
1=a_{1}+a_{2}(1-1) \Rightarrow a_{1}=1
$$

If $x=2$, then $f(x)=8$

$$
\begin{aligned}
& 8=a_{1}+a_{2}(2-1)+a_{3}(2-1)(2-2) \\
& 8=1+a_{2} \Rightarrow a_{2}=7
\end{aligned}
$$

Gregory-Newton Interpolation Method

- Example 7 (cont'd): G-N Method

If $x=3$, then $f(x)=27$
$27=a_{1}+a_{2}(3-1)+a_{3}(3-1)(3-2)+a_{4}(3-1)(3-2)(3-3)$
$27=1+7(2)+2 a_{3} \Rightarrow a_{3}=6$

Hence, the polynomial is given by

$$
f(x)=1+7(x-1)+6(x-1)(x-2)
$$

Gregory-Newton Interpolation Method

A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Example 7 (cont'd): G-N Method

For $x=2.2$,

$$
\begin{aligned}
& f(x)=1+7(x-1)+6(x-1)(x-2) \\
& f(2.2)=1+7(2.2-1)+6(2.2-1)(2.2-2)=10.84
\end{aligned}
$$

For $x=2.8$

$$
\begin{aligned}
& f(x)=1+7(x-1)+6(x-1)(x-2) \\
& f(2.8)=1+7(2.8-1)+6(2.8-1)(2.8-2)=22.24
\end{aligned}
$$

Gregory-Newton Interpolation Method

■ Example 7 (cont'd): G-N Method

- Comparison With true values:

x	$f(x)$		\%Error
	Approximation	True	
2.2	10.84	10.65	1.78
2.8	22.24	21.95	1.32

Gregory-Newton Interpolation Method

- Example 8: G-N Interpolation

Show that the quadratic polynomial obtained in Example 7 could have been obtained using the method of undetermined coefficients that will result in the same interpolated values for x equal 2.2 and 2.8.

Gregory-Newton Interpolation Method

■ Example 8 (cont'd): G-N Interpolation

- A quadratic polynomial using the method of undetermined coefficients is given by

$$
f(x)=b_{0}+b_{1} x+b_{2} x^{2}
$$

- The coefficients will be determined as follows

x	1	2	3
$f(x)$	1	8	27

Gregory-Newton Interpolation Method

Example 8 (cont'd): G-N Interpolation

x	1	2	3
$f(x)$	1	8	27

$$
\begin{aligned}
& 1=b_{0}+b_{1}(1)+b_{2}(1)^{2} \\
& 8=b_{0}+b_{1}(2)+b_{2}(2)^{2} \\
& 27=b_{0}+b_{1}(3)+b_{2}(3)^{2}
\end{aligned}
$$

Example 8 (cont'd): G-N Interpolation

$$
\begin{aligned}
& 1=b_{0}+b_{1}(1)+b_{2}(1)^{2} \\
& 8=b_{0}+b_{1}(2)+b_{2}(2)^{2} \\
& 27=b_{0}+b_{1}(3)+b_{2}(3)^{2}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& b_{0}+b_{1}+b_{2}=1 \\
& b_{0}+2 b_{1}+4 b_{2}=8 \\
& b_{0}+3 b_{1}+9 b_{2}=27
\end{aligned}
$$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
8 \\
27
\end{array}\right] \Rightarrow\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
6 \\
-11 \\
6
\end{array}\right]
$$

Gregory-Newton Interpolation

 Method- Example 8 (cont'd): G-N Interpolation - Therefore,

$$
\begin{gathered}
f(x)=b_{0}+b_{1} x+b_{2} x^{2} \\
\text { OR } \\
f(x)=6-11 x+6 x^{2} \\
f(2.2)=6-11(2.2)+6(2.2)^{2}=10.84 \\
f(2.8)=6-11(2.8)+6(2.8)^{2}=22.24
\end{gathered}
$$

These are the same values obtained by Gregory-Newton Method.

