

Gauss-Jordan Elimination

■ We saw that the Gaussian Elimination consists of two steps:

- Forward Pass
- Back Substitution

For the following set of equation:

$$
\begin{equation*}
\left\lfloor a_{i j}\right\rfloor\left\{X_{i}\right\}=\left\{C_{i}\right\} \tag{1}
\end{equation*}
$$

Gauss-Jordan Elimination

\cdot A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- The Forward Pass can always result into a augmented matrix in the general form as

$$
\left[\begin{array}{cccccc}
1 & d_{12} & d_{13} & \cdots & d_{1 n} & e_{1} \tag{2}\\
0 & 1 & d_{23} & \cdots & d_{2 n} & e_{2} \\
0 & 0 & 1 & \cdots & d_{3 n} & e_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 1 & e_{n}
\end{array}\right]
$$

Gauss-Jordan Elimination

- The Back Substitution can always result into the following general form:

$$
\begin{align*}
& X_{n}=e_{n} \\
& X_{n-1}=e_{n-1}-d_{n-1, n} X_{n} \\
& X_{n-2}=e_{n-2}-d_{n-2, n-1} X_{n-1}-d_{n-2, n} X_{n} \tag{3}\\
& \vdots \\
& X_{1}=e_{1}-d_{12} X_{2}-d_{13} X_{3}-\cdots-d_{1, n} X_{n}
\end{align*}
$$

Gauss-Jordan Elimination

- Gauss-Jordan Process

- An alternative process of elimination in which all coefficients in a column except the pivot element are eliminated can also be used to obtain a solution.
- In Gauss-Jordan elimination, the solution is obtained directly after performing the forward pass.
- There is no back substitution.

Gauss-Jordan Elimination

■ Gauss-Jordan Process

- Given the following set of equation:

$$
\begin{align*}
& a_{11} X_{1}+a_{12} X_{2}+a_{13} X_{3}+\cdots+a_{1 n} X_{n}=C_{1} \\
& a_{21} X_{1}+a_{22} X_{2}+a_{23} X_{3}+\cdots+a_{2 n} X_{n}=C_{2} \\
& a_{31} X_{1}+a_{32} X_{2}+a_{33} X_{3}+\cdots+a_{3 n} X_{n}=C_{3} \tag{4}\\
& \vdots \quad \vdots \quad \vdots \quad \vdots \\
& a_{n 1} X_{1}+a_{n 2} X_{2}+a_{n 3} X_{3}+\cdots+a_{n n} X_{n}=C_{n}
\end{align*}
$$

Gauss-Jordan Elimination

- Gauss-Jordan Process
- Or given the following set of equation in augmented matrix of the form:

$$
\left[\begin{array}{ccccc:c}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} & C_{1} \tag{5}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} & C_{2} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} & C_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n} & C_{n}
\end{array}\right]
$$

Gauss-Jordan Elimination

- Gauss-Jordan Process
- Using Gauss-Jordan, Eq. 5 can be transformed into the following form:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 0 & \cdots & 0 & C_{1}^{*} \tag{6}\\
0 & 1 & 0 & \cdots & 0 & C_{2}^{*} \\
0 & 0 & 1 & \cdots & 0 & C_{3}^{*} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 1 & C_{n}^{*}
\end{array}\right]
$$

Gauss-Jordan Elimination

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
- Gauss-Jordan Process
- And in which the solution is readily obtained as

$$
\begin{gather*}
X_{1}=C_{1}^{*} \\
X_{2}=C_{2}^{*} \\
X_{3}=C_{3}^{*} \tag{7}\\
\vdots \quad \quad \vdots \\
X_{n}=C_{n}^{*}
\end{gather*}
$$

Gauss-Jordan Elimination

■ Example: Gauss-Jordan

- Solve the following set of simultaneous equations using the Gauss-Jordan Method:

$$
\begin{array}{r}
X_{1}+3 X_{2}+2 X_{3}=15 \\
2 X_{1}+4 X_{2}+3 X_{3}=22 \\
3 X_{1}+4 X_{2}+7 X_{3}=39
\end{array}
$$

Gauss-Jordan Elimination

-A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering
■ Example (cont'd): Gauss-Jordan

- This system of equations can be represented in a matrix form as

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 4 & 3 \\
3 & 4 & 7
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
15 \\
22 \\
39
\end{array}\right]
$$

Gauss-Jordan Elimination

■ Example (cont'd): Gauss-Jordan

- Or this system of equations can be represented in an augmented matrix form as
$\left[\begin{array}{lll|l}1 & 3 & 2 & 15 \\ 2 & 4 & 3 & 22 \\ 3 & 4 & 7 & \\ 39\end{array}\right]$

Gauss-Jordan Elimination

- Example (cont'd): Gauss-Jordan
- Step 3

$$
\left[\begin{array}{ccc:c}
1 & 0 & 1 / 2 & 3 \\
0 & 1 & 1 / 2 & 4 \\
0 & 0 & 7 / 2 & 14
\end{array}\right] \begin{aligned}
& R_{1}^{\prime}=R_{1}-R_{3}^{\prime} / 2 \\
& R_{2}^{\prime}=R_{2}-R_{3}^{\prime} / 2 \\
& R_{3}^{\prime}=R_{3} /(7 / 2)
\end{aligned}\left[\begin{array}{ccc:c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

| $R_{1}: 1$ | 0 | $1 / 2$ | 3 | |
| :---: | :---: | :---: | :---: | :---: | ---: |
| $R_{3}^{\prime} / 2: 0$ | 0 | $1 / 2$ | 2 | $(-)$ |
| $R_{1}^{\prime}: 1$ | 0 | 0 | 1 | |

$$
\begin{array}{|cccccc|}
\hline R_{2}: 0 & 1 & 1 / 2 & 4 & \\
R_{3}^{\prime} / 2: 0 & 0 & 1 / 2 & 2 & (-) \\
\hline R_{2}^{\prime}: 0 & 1 & 0 & 2 & \\
\hline
\end{array}
$$

Gauss-Jordan Elimination

- Example (cont'd): Gauss-Jordan
- The last augmented matrix gives the solution for the system of equations as follows:

$$
\left[\begin{array}{lll:l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
$$

Gauss-Jordan Elimination

-A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- Example (cont'd): Gauss-Jordan - OR

$$
\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 4 & 3 \\
3 & 4 & 7
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
15 \\
22 \\
39
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
$$

LU Decomposition

■ Recall that the Guassian elimination process consists of two steps:

- Forward Pass
- Back Substitution

■ The forward pass transforms the system of equations into upper triangular matrix.

LU Decomposition

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

The upper triangular matrix can be denoted as \boldsymbol{U} and it is given by

$$
\left[\begin{array}{ccccc}
1 & u_{12} & u_{13} & \cdots & u_{1 n} \tag{8}\\
0 & 1 & u_{23} & \cdots & u_{2 n} \\
0 & 0 & 1 & \cdots & u_{3 n} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

LU Decomposition

Recall the augmented matrix that can result from the forward pass of Gaussian Elimination:

$$
\left[\begin{array}{cccccc}
1 & d_{12} & d_{13} & \cdots & d_{1 n} & e_{1} \tag{9}\\
0 & 1 & d_{23} & \cdots & d_{2 n} & e_{2} \\
0 & 0 & 1 & \cdots & d_{3 n} & e_{3} \\
\vdots & \vdots & \vdots & \vdots \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 1 & e_{n}
\end{array}\right]
$$

LU Decomposition

The values of this matrix (Eq. 8) can be related to the values in Eq. 9 as

$$
\begin{aligned}
u_{i j}=d_{i j} & \text { for } i=1,2, \cdots, n \\
& \text { and } j=1,2, \cdots, n
\end{aligned}
$$

The upper triangular matrix \boldsymbol{U} can be related to the coefficients matrix \boldsymbol{A} as

LU Decomposition

- Therefore Eq. 10 can be expressed as

$$
\begin{align*}
& {\left[\begin{array}{ccccc}
l_{11} & 0 & 0 & \cdots & 0 \\
l_{21} & l_{22} & 0 & \cdots & 0 \\
l_{31} & l_{32} & l_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
l_{n 1} & l_{n 2} & l_{n 3} & \cdots & l_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
1 & u_{12} & u_{13} & \cdots & u_{1 n} \\
0 & 1 & u_{23} & \cdots & u_{2 n} \\
0 & 0 & 1 & \cdots & u_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]} \\
& L U=A \tag{12}
\end{align*}
$$

LU Decomposition

- Eq. 12 states that the coefficient matrix A can be decomposed to two triangular matrices L and \boldsymbol{U}.
- These triangular matrices can be determined without the use of Gaussian elimination method by performing the matrix multiplication LU in Eq. 12

LU Decomposition

$$
\left[\begin{array}{ccccc}
l_{11} & 0 & 0 & \cdots & 0 \tag{13}\\
l_{21} & l_{22} & 0 & \cdots & 0 \\
l_{31} & l_{32} & l_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
l_{n 1} & l_{n 2} & l_{n 3} & \cdots & l_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
1 & u_{12} & u_{13} & \cdots & u_{1 n} \\
0 & 1 & u_{23} & \cdots & u_{2 n} \\
0 & 0 & 1 & \cdots & u_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]=
$$

$$
=\left[\begin{array}{ccccc}
l_{11} & l_{11} u_{12} & l_{11} u_{13} & \cdots & l_{11} u_{1 n} \\
l_{21} & l_{21} u_{12}+l_{22} & l_{21} u_{13}+l_{22} u_{23} & \cdots & l_{21} u_{1 n}+l_{22} u_{2 n} \\
l_{31} & l_{31} u_{12}+l_{32} & l_{31} u_{13}+l_{33} u_{23}+l_{33} & \cdots & l_{31} u_{1 n}+l_{32} u_{n 2}+l_{33} u_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
l_{n 1} & l_{n 1} u_{12}+l_{n 2} & l_{n 1} u_{13}+l_{n 2} u_{23}+l_{n 3} & \cdots & l_{n 1} u_{1 n}+l_{n 2} u_{2 n}+l_{n 3} u_{3 n}+\cdots+l_{n n}
\end{array}\right]
$$

LU Decomposition

Multiplication of $\boldsymbol{L} \boldsymbol{U}$ will result in

$\left[\begin{array}{ccccc}l_{11} & l_{11} u_{12} & l_{11} u_{13} & \cdots & l_{11} u_{1 n} \\ l_{21} & l_{21} u_{12}+l_{22} & l_{21} u_{13}+l_{22} u_{23} & \cdots & l_{21} u_{1 n}+l_{22} u_{2 n} \\ l_{31} & l_{31} u_{12}+l_{32} & l_{31} u_{13}+l_{32} u_{23}+l_{33} & \cdots & l_{31} u_{1 n}+l_{32} u_{n 2}+l_{33} u_{3 n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{n 1} & l_{n 1} u_{12}+l_{n 2} & l_{n 1} u_{13}+l_{n 2} u_{23}+l_{n 3} & \cdots & l_{n 1} u_{1 n}+l_{n 2} u_{2 n}+l_{n 3} u_{3 n}+\cdots+l_{n n}\end{array}\right]=$

$$
=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{31} & \cdots & a_{1 n} \tag{14}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right]
$$

LU Decomposition

- For example, the multiplication of the first row of \boldsymbol{L} with the first column of \boldsymbol{U} results un the following value that is equal to a_{11}.

$$
l_{11}(1)=a_{11}
$$

LU Decomposition

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

■ In view of Eq. 14, for example
$\left[\begin{array}{ccccc}l_{11} & l_{11} u_{12} & l_{11} u_{13} & \cdots & l_{11} u_{1 n} \\ l_{21} & l_{21} u_{12}+l_{22} & l_{21} u_{13}+l_{22} u_{23} & \cdots & l_{21} u_{1 n}+l_{22} u_{2 n} \\ l_{31} & l_{31} u_{12}+l_{32} & l_{31} u_{13}+l_{32} u_{23}+l_{33} & \cdots & l_{31} u_{1 n}+l_{32} u_{n 2}+l_{33} u_{3 n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ l_{n 1} & l_{n 1} u_{12}+l_{n 2} & l_{n 1} u_{13}+l_{n 2} u_{23}+l_{n 3} & \cdots & l_{n 1} u_{1 n}+l_{n 2} u_{2 n}+l_{n 3} u_{3 n}+\cdots+l_{n n}\end{array}\right]=$

$$
=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{31} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right] \quad \begin{aligned}
& l_{31}=a_{31} \\
& l_{11} u_{13}=a_{31} \Rightarrow u_{13}=\frac{a_{31}}{l_{11}}
\end{aligned}
$$

Slide No. 138

LU Decomposition

- From Eq. 14, the values for L and U can be computed from:

$$
\begin{array}{ll}
l_{i 1}=a_{i 1} & \text { for } i=1,2, \ldots, n \\
u_{1 j}=\frac{a_{1 j}}{l_{11}} & \text { for } j=2,3, \ldots, n \tag{15}\\
l_{i j}=a_{i j}-\sum_{k=1}^{j-1} l_{i k} u_{k j} & \text { for } j=2,3, \ldots, n-1 \text { and } i=j, j+1, \ldots, n \\
u_{j i}=\frac{a_{j i}-\sum_{k=1}^{j-1} l_{j k} u_{k i}}{l_{j j}} \text { for } j=2,3, \ldots, n-1 \text { and } i=j+1, j+2, . \\
l_{n n}=a_{n n}-\sum_{k=1}^{n-1} l_{n k} u_{k n}
\end{array}
$$

