

Gaussian Elimination

■ Gaussian Elimination Method

- Earlier we saw how the system of two equation was solved by the elimination of the unknowns:

$$
\begin{align*}
& a_{11} X_{1}+a_{12} X_{2}=C_{1} \tag{1}\\
& a_{21} X_{1}+a_{22} X_{2}=C_{2} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
X_{1}=\frac{C_{1}-a_{12} X_{2}}{a_{11}} \quad \text { (3) } \quad a_{21} \frac{C_{1}-a_{12} X_{2}}{a_{11}}+a_{22} X_{2}=C_{2} \tag{4}
\end{equation*}
$$

Gaussian Elimination

- Gaussian Elimination Method

- Equation 4 is a single equation with one unknown, X_{2}.
- This equation can be solved for X_{2} to give

$$
\begin{equation*}
X_{2}=\frac{a_{11} C_{2}-a_{21} C_{1}}{a_{11} a_{22}-a_{21} a_{12}} \tag{5}
\end{equation*}
$$

- Eq. 5 can be substituted back into Eq. 3 to give

$$
\begin{equation*}
X_{1}=\frac{a_{22} C_{1}-a_{12} C_{2}}{a_{11} a_{22}-a_{21} a_{12}} \tag{6}
\end{equation*}
$$

Gaussian Elimination

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Gaussian Elimination Method
- In the previous example of two-equation systems, the procedure consists of two steps:
- The equation were manipulated to eliminate one of the unknowns from the equations. The result of this elimination step was that we had one equation with one unknown.
- Consequently, this equation could be solved directly and the result back-substituted into one of the original equations to solve for the rest.

Gaussian Elimination

- A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering

- Gaussian Elimination Method
- This basic approach can be extended to large systems of simultaneous equations by developing a systematic scheme or algorithm to eliminate the unknowns, and to back-substitute.
- Gaussian elimination method is the most basic of these schemes.

Gaussian Elimination

- Gaussian Elimination Procedure

The Gaussian elimination procedure can be separated into two parts:

1. Forward Pass
2. Back Substitution

Gaussian Elimination

- Gaussian Elimination Procedure
- Forward Pass
- The process begins with the arrangement of the system of equations in such a manner that $a_{11}=1$, to give
$a_{11} X_{1}+a_{12} X_{2}+a_{13} X_{3}+\cdots+a_{1 n} X_{n}=c_{1}$
$a_{21} X_{1}+a_{22} X_{2}+a_{23} X_{3}+\cdots+a_{2 n} X_{n}=c_{2}$
$a_{31} X_{1}+a_{32} X_{2}+a_{33} X_{3}+\cdots+a_{3 n} X_{n}=c_{3}$
$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$
$a_{n 1} X_{1}+a_{n 2} X_{2}+a_{n 3} X_{3}+\cdots+a_{n n} X_{n}=c_{n}$

Gaussian Elimination

- Forward Pass

- Dividing the first equation in (EQ. 7) by a_{11} gives

$$
\begin{align*}
& X_{1}+a_{12}^{\prime} X_{2}+a_{13}^{\prime} X_{3}+\cdots+a_{1 n}^{\prime} X_{n}=C_{1}^{\prime} \\
& a_{21} X_{1}+a_{22} X_{2}+a_{23} X_{3}+\cdots+a_{2 n} X_{n}=C_{2} \tag{8}\\
& a_{31} X_{1}+a_{32} X_{2}+a_{33} X_{3}+\cdots+a_{3 n} X_{n}= C_{3} \\
& \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
& a_{n 1} X_{1}+a_{n 2} X_{2}+a_{n 3} X_{3}+\cdots+a_{n n} X_{n}=C_{n}
\end{align*}
$$

Gaussian Elimination

- Forward Pass

- Multiplying the first equation in (EQ. 8) by $-a_{i 1}$ for $i=2, \ldots, n$ then adding to the i th equation eliminates X_{1} from all but the first equation to give

$$
\begin{gather*}
X_{1}+a_{12}^{\prime} X_{2}+a_{13}^{\prime} X_{3}+\cdots+a_{1 n}^{\prime} X_{n}=C_{1}^{\prime} \\
a_{22}^{\prime} X_{2}+a_{23}^{\prime} X_{3}+\cdots+a_{2 n}^{\prime} X_{n}=C_{2}^{\prime} \\
a_{32}^{\prime} X_{2}+a_{33}^{\prime} X_{3}+\cdots+a_{3 n}^{\prime} X_{n}=C_{3}^{\prime} \tag{9}\\
\vdots \quad \vdots \quad \vdots \\
a_{n 2}^{\prime} X_{2}+a_{n 3}^{\prime} X_{3}+\cdots+a_{n n}^{\prime} X_{n}=C_{n}^{\prime}
\end{gather*}
$$

Gaussian Elimination

- Forward Pass

- The second equation in (EQ. 9) is now divided by a_{22}^{\prime} to give

$$
\begin{align*}
X_{1}+a_{12}^{\prime} X_{2}+a_{13}^{\prime} X_{3}+\cdots+a_{1 n}^{\prime} X_{n} & =C_{1}^{\prime} \\
X_{2}+a_{23}^{\prime \prime} X_{3}+\cdots+a_{2 n}^{\prime \prime} X_{n} & =C_{2}^{\prime \prime} \\
a_{32}^{\prime} X_{2}+a_{33}^{\prime} X_{3}+\cdots+a_{3 n}^{\prime} X_{n} & =C_{3}^{\prime} \tag{10}\\
\vdots & \vdots
\end{align*} \quad \vdots \quad \vdots \quad 1 . a_{n n}^{\prime} X_{n}=C_{n}^{\prime}
$$

Gaussian Elimination

- Forward Pass

- Multiplying the second equation in (EQ. 10) by $-a_{i 2}$ for $i=3, \ldots, n$ then adding to the i th equation eliminates x_{2} from all but the first and second equations.
- This process is continued until one equation in one unknown remains.
- Note that at each stage the remaining equations may require rearranging to avoid a zero divisor in $a_{i i}$ position.

Gaussian Elimination

- Forward Pass

- Once the process is completed, the system of equations as given by EQ. 7 should have the following triangular form:

$$
\begin{align*}
X_{1}+d_{12} X_{2}+d_{13} X_{3}+\cdots+d_{1 n} X_{n} & =e_{1} \\
X_{2}+d_{23} X_{3}+\cdots+d_{2 n} X_{n} & =e_{2} \tag{11}\\
X_{3}+\cdots+d_{3 n} X_{n} & =e_{3} \\
\vdots & \vdots \\
X_{n} & =e_{n}
\end{align*}
$$

Gaussian Elimination

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

Forward Pass:

- EQ. 11 can be written in a more compact form, in an augmented matrix as

$$
\left[\begin{array}{cccccc}
1 & d_{12} & d_{13} & \cdots & d_{1 n} & e_{1} \tag{12}\\
0 & 1 & d_{23} & \cdots & d_{2 n} & e_{2} \\
0 & 0 & 1 & \cdots & d_{3 n} & e_{3} \\
\vdots & \vdots & \vdots & \vdots: & \vdots & \vdots \\
0 & 0 & 0 & 0 & 1 & e_{n}
\end{array}\right]
$$

Gaussian Elimination

- Forward Pass
- Hence the original system of equations can be transformed to a triangular matrix form as follows:

$$
\begin{gathered}
a_{11} X_{1}+a_{12} X_{2}+a_{13} X_{3}+\cdots+a_{1 n} X_{n}=b_{1} \\
a_{21} X_{1}+a_{22} X_{2}+a_{23} X_{3}+\cdots+a_{2 n} X_{n}=b_{2} \\
a_{31} X_{1}+a_{32} X_{2}+a_{33} X_{3}+\cdots+a_{3 n} X_{n}=b_{3} \\
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
a_{n 1} X_{1}+a_{n 2} X_{2}+a_{n 3} X_{3}+\cdots+a_{n n} X_{n}=b_{n}
\end{gathered} \Longrightarrow\left[\begin{array}{cccccc}
1 & d_{12} & d_{13} & \cdots & d_{1 n} & e_{1} \\
0 & 1 & d_{23} & \cdots & d_{2 n} & e_{2} \\
0 & 0 & 1 & \cdots & d_{3 n} & e_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 1 & e_{n}
\end{array}\right]
$$

Gaussian Elimination

- Example: Forward Pass

Perform a forward pass to transform the following set of equations to a triangular matrix form:

$$
\begin{gather*}
3 X_{1}-2 X_{2}+4 X_{3}=18 \\
X_{1}+X_{2}-2 X_{3}=6 \tag{13}\\
2 X_{1}+3 X_{2}+X_{3}=10
\end{gather*}
$$

Gaussian Elimination

- Example (cont'd): Forward Pass
- Dividing the first equation in (EQ. 13) by $a_{11}=3$, gives

$$
\begin{gather*}
X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3}=6 \\
X_{1}+X_{2}-2 X_{3}=6 \tag{14}\\
2 X_{1}+3 X_{2}+X_{3}=10
\end{gather*}
$$

Gaussian Elimination

■ Example (cont'd): Forward Pass

- Multiplying the first equation in (EQ. 14) by $-a_{21}=-1$ then adding to the $2^{\text {nd }}$ equation eliminates X_{1} from the second equation:

$$
\begin{array}{|r}
-X_{1}+\frac{2}{3} X_{2}-\frac{4}{3} X_{3}=-6 \\
X_{1}+X_{2}-2 X_{3}=6 \tag{15}\\
\hline \frac{5}{3} X_{2}-\frac{10}{3} X_{3}=0
\end{array} \begin{array}{r}
X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3}=6 \\
\frac{5}{3} X_{2}-\frac{10}{3} X_{3}=0 \\
2 X_{1}+3 X_{2}+X_{3}=10
\end{array}
$$

Gaussian Elimination

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Example (cont'd): Forward Pass
- Multiplying the first equation in (EQ. 14) by $-a_{31}=-2$ then adding to the $3^{\text {nd }}$ equation eliminates X_{1} from the third equation:

$$
\begin{array}{rr}
-2 X_{1}+\frac{4}{3} X_{2}-\frac{8}{3} X_{3}=-12 \\
2 X_{1}+3 X_{2}+X_{3}=10 \\
\hline \frac{13}{3} X_{2}-\frac{5}{3} X_{3}=-2 & \frac{2}{3} X_{2}+\frac{4}{3} X_{3}=6 \tag{16}\\
\frac{5}{3} X_{2}-\frac{10}{3} X_{3}=0 \\
\frac{13}{3} X_{2}-\frac{5}{3} X_{3}=-2
\end{array}
$$

Gaussian Elimination

- Example (cont'd): Forward Pass
- The second equation in (EQ. 16) is now divided by $a_{22}=5 / 3$ to give

$$
\begin{align*}
X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3} & =6 \\
X_{2}-2 X_{3} & =0 \tag{17}\\
\frac{13}{3} X_{2}-\frac{5}{3} X_{3} & =-2
\end{align*}
$$

Gaussian Elimination

Example (cont'd): Forward Pass

- Multiplying the second equation in (EQ. 17) by $-a_{31}=-13 / 3$ then adding to the $3^{\text {nd }}$ equation eliminates X_{2} from the third equation:

$$
\begin{align*}
-\frac{13}{3} X_{2}+\frac{26}{3} X_{3} & =0 \\
\frac{13}{3} X_{2}-\frac{5}{3} X_{3} & =-2 \tag{18}\\
& X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3}
\end{align*}=6
$$

$$
7 X_{3}=-2
$$

Gaussian Elimination

■ Example (cont'd): Forward Pass

- The third equation in (EQ. 18) is now divided by $a_{33}=7$ to give

$$
\begin{align*}
X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3} & =6 \\
X_{2}-2 X_{3} & =0 \tag{19}\\
X_{3} & =-\frac{2}{7}
\end{align*}
$$

Gaussian Elimination

■ Example (cont'd): Forward Pass

- Hence, the required triangular matrix form of the forward pass is

$$
\begin{aligned}
X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3} & =6 \\
X_{2}-2 X_{3} & =0 \\
X_{3} & =-\frac{2}{7}
\end{aligned} \longrightarrow\left[\begin{array}{cccc}
1 & -2 / 3 & 4 / 3 & 6 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2 / 7
\end{array}\right]
$$

Gaussian Elimination

- Gaussian Elimination Procedure

- Back Substitution
- We saw that the original system of equations was transformed to a triangular matrix form by the forward pass:

$$
\begin{gather*}
a_{11} X_{1}+a_{12} X_{2}+a_{13} X_{3}+\cdots+a_{1 n} X_{n}=C_{1} \tag{20}\\
a_{21} X_{1}+a_{22} X_{2}+a_{23} X_{3}+\cdots+a_{2 n} X_{n}=C_{2} \\
a_{31} X_{1}+a_{32} X_{2}+a_{33} X_{3}+\cdots+a_{3 n} X_{n}=C_{3} \\
\vdots \vdots \vdots \\
\vdots \\
a_{n 1} X_{1}+a_{n 2} X_{2}+a_{n 3} X_{3}+\cdots+a_{n n} X_{n}=C_{n}
\end{gather*} \Longrightarrow\left[\begin{array}{cccccc}
1 & d_{12} & d_{13} & \cdots & d_{1 n} & e_{1} \\
0 & 1 & d_{23} & \cdots & d_{2 n} & e_{2} \\
0 & 0 & 1 & \cdots & d_{3 n} & e_{3} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 1 & e_{n}
\end{array}\right]
$$

Gaussian Elimination

-A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- Gaussian Elimination Procedure
- Back Substitution
- After the forward pass is completed, the unknowns in the equations are found by back substitution procedure.
- The back substitution procedure can be better illustrated if the matrix of Eq. 20 is written in the equivalent form in terms of individual equations as shown in the next viewgraph.

Gaussian Elimination

- Gaussian Elimination Procedure
- Back Substitution

$$
\begin{align*}
X_{1}+d_{12} X_{2}+d_{13} X_{3} \cdots+d_{1, n-2} X_{n-2}+d_{1, n-1} X_{n-1}+d_{1, n} X_{n} & =e_{1} \\
X_{2}+d_{23} X_{3} \cdots+d_{2, n-2} X_{n-2}+d_{2, n-1} X_{n-1}+d_{2, n} X_{n} & =e_{2} \\
X_{3} \cdots+d_{3, n-2} X_{n-2}+d_{3, n-1} X_{n-1}+d_{3, n} X_{n} & =e_{3} \tag{21}\\
X_{n-2}+d_{n-2, n-1} X_{n-1}+d_{n-2, n} X_{n} & =e_{n-2} \\
X_{n-1}+d_{n-1, n} X_{n} & =e_{n-1} \\
X_{n} & =e_{n}
\end{align*}
$$

Gaussian Elimination

- Gaussian Elimination Procedure
- Back Substitution
- From EQS. 21, which represent the system of equations after the forward pass, it is now easy to obtain the solution for X_{i}. The last equation in EQS. 21 involves only a single unknown; thus the value of is given by

$$
X_{n}=e_{n}
$$

Gaussian Elimination

- Gaussian Elimination Procedure

- Back Substitution

- Therefore, the unknowns are determined by back substitution as follows:

$$
\begin{aligned}
& X_{n}=e_{n} \\
& X_{n-1}=e_{n-1}-d_{n-1, n} X_{n} \\
& X_{n-2}=e_{n-2}-d_{n-2, n-1} X_{n-1}-d_{n-2, n} X_{n} \\
& \vdots \\
& X_{1}=e_{1}-d_{12} X_{2}-d_{13} X_{3}-\cdots-d_{1, n} X_{n}
\end{aligned}
$$

Gaussian Elimination

Back Substitution

The following set of equations can be used to find the solution by back substitution:

$$
\begin{align*}
& X_{n}=e_{n} \\
& X_{n-1}=e_{n-1}-d_{n-1, n} X_{n} \\
& X_{n-2}=e_{n-2}-d_{n-2, n-1} X_{n-1}-d_{n-2, n} X_{n} \tag{22}\\
& \vdots \\
& X_{1}=e_{1}-d_{12} X_{2}-d_{13} X_{3}-\cdots-d_{1, n} X_{n}
\end{align*}
$$

Gaussian Elimination

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

■ Example: Back Substitution
The forward pass was performed in the last example to transform the following set of equations to a triangular matrix form:

$$
\begin{gather*}
3 X_{1}-2 X_{2}+4 X_{3}=18 \\
X_{1}+X_{2}-2 X_{3}=6 \tag{2}\\
2 X_{1}+3 X_{2}+X_{3}=10
\end{gather*}
$$

Gaussian Elimination

■ Example (cont'd): Back Substitution

- The forward pass resulted in the following set of equations:

$$
\begin{aligned}
X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3} & =6 \\
X_{2}-2 X_{3} & =0 \\
X_{3} & =-\frac{2}{7}
\end{aligned} \longrightarrow\left[\begin{array}{cccc}
1 & -2 / 3 & 4 / 3 & 6 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2 / 7
\end{array}\right]
$$

Gaussian Elimination

- Example (cont'd): Back Substitution
- The back substitution will give the solution as follows:

$$
\begin{array}{rlrl}
X_{3} & =-\frac{2}{7} \\
X_{2}-2 X_{3} & =0 & X_{3} & =-\frac{2}{7} \\
X_{1}-\frac{2}{3} X_{2}+\frac{4}{3} X_{3} & =6 & & =2\left(-\frac{2}{7}\right)=-\frac{4}{7} \\
X_{1} & =6+\left(\frac{2}{3}\right)\left(-\frac{4}{7}\right)-\left(\frac{4}{3}\right)\left(\frac{-2}{7}\right)=6
\end{array}
$$

Gaussian Elimination

Operation	Symbol
Step 1: Construct the augmented matrix of the $\left[a_{i j}\right]$ matrix and $\left\{C_{i}\right\}$ vector	$\begin{aligned} & \left\lfloor a_{i j} \vdots C_{i}\right\rfloor i=1, \cdots, n \\ & j=1, \cdots, n \end{aligned}$
Step 2: Check a_{11}; if it is equal to zero then interchange rows so that $a_{11} \neq 0$	
ENCE 203-Chapter sc. Smultaneous linear equations	

Gaussian Elimination

■ Summary of Gaussian Method

Operation	Symbol
Step 3: Divide row one by a_{11} to get new coefficient $a^{\prime}{ }_{i j}$ where $a_{11}=1$ Step 4: Multiply row one by $-a_{i 1}$ and add to the i th row for $I=2, \ldots, n$	$-a_{i 1}$ $i=2$

Gaussian Elimination

Summary of Gaussian Method
Operation Symbol Step 5: Repeat steps 2, 3, and 4 for the second through $(n-1)^{\text {th }}$ rows Step 6: Solve for X_{n} from the nth equation $X_{n}=e_{n}$

Gaussian Elimination

Operation	Symbol
Step 7: Solve for X_{n-1}, \ldots, X_{1}	$X_{j}=e_{j}-\sum_{r=j+1}^{n} d_{j r} X_{r}$

Gaussian Elimination

- Example:

Solve the following set of simultaneous linear equations using the Gaussian method:

$$
\begin{aligned}
2 X_{1}+3 X_{2}-2 X_{3}-X_{4} & =-2 \\
2 X_{1}+5 X_{2}-3 X_{3}+X_{4} & =7 \\
-2 X_{1}+X_{2}+3 X_{3}-2 X_{4} & =1 \\
-5 X_{1}+2 X_{2}-X_{3}+3 X_{4} & =8
\end{aligned}
$$

Gaussian Elimination

■ Example (cont'd):

- Forward Pass

Original Matrix						Operation	Resultant Matrix					
			-2	-1		$R_{1}^{\prime}=R_{1} / 2$			2/3	-1	-1/2	-17
	2		-3	1	7	$R_{2}^{\prime}=R_{2}-2 R_{1}^{\prime}$			2	-1	2	9
	2		3	-2	1	$R_{3}^{\prime}=R_{3}+2 R_{1}^{\prime}$			4	1	3	
	5		-1	3	8	$R_{4}^{\prime}=R_{4}+5 R_{1}^{\prime}$			19/2	-6	1/2	3

In the above notation, the operation column describes the row operations Performed on each row R_{i}, where R_{i} = row of vector values and R_{i}^{\prime} is the Resulting value.

Gaussian Elimination

- Example (cont'd):

- Forward Pass

$$
\left[\begin{array}{ccccc}
1 & 3 / 2 & -1 & -1 / 2 & -1 \\
0 & 1 & -1 / 2 & 1 & 9 / 2 \\
0 & 0 & 3 & -7 & -19 \\
0 & 0 & -5 / 4 & -9 & -159 / 4
\end{array}\right]
$$

Gaussian Elimination

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

Example (cont'd):

- Forward Pass

Gaussian Elimination

- Example (cont'd):

- Forward Pass

Gaussian Elimination

 \square Example (cont'd):- Forward Pass

The resultant matrix of the last operation represents the following set:

$$
\begin{aligned}
X_{1}+\frac{3}{2} X_{2}-X_{3}-\frac{1}{2} X_{4} & =-1 \\
X_{2}-\frac{1}{2} X_{3}+\quad X_{4} & =\frac{9}{2} \\
X_{3}-\frac{7}{3} X_{4} & =-\frac{19}{3} \\
X_{4} & =\frac{572}{143}=4
\end{aligned}
$$

Gaussian Elimination

■ Example (cont'd):

- Back Substitution

$$
\begin{gathered}
X_{4}=4 \\
X_{3}-\frac{7}{3} X_{4}=-\frac{19}{3} \\
X_{2}-\frac{1}{2} X_{3}+X_{4}=\frac{9}{2} \\
X_{1}+\frac{3}{2} X_{2}-X_{3}-\frac{1}{2} X_{4}=-1 \\
X_{3}=-\frac{19}{3}+\frac{7}{3}(4)=3 \\
X_{2}=\frac{9}{2}+\frac{1}{2}(3)-4=2 \\
X_{1}+\frac{3}{2} X_{2}-X_{3}-\frac{1}{2} X_{4}=-1-\frac{3}{2}(2)+3+\frac{1}{2}(4)=1 \\
\therefore X_{1}=1, X_{2}=2, X_{3}=3, \text { and } X_{4}=4
\end{gathered}
$$

