

Multiple Roots

- The following figure shows a case of multiple roots, where the function $f(x)$ is tangent to the x axis.
This case corresponds to having two roots of the same value and sign

Multiple Roots

Multiple Roots

- In general, there can be triple, quadruple,, or multiple roots for a function $f(x)$.
- It can be shown that even roots result in tangent $f(x)$ to the x axis, whereas odd multiple roots result in a function $f(x)$ that crosses the x axis with inflection point at the root.

Multiple Roots

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- That is, a point where the function changes curvature.
- Example:
- The following function has triple roots:

$$
\begin{aligned}
f(x) & =x^{4}-8 x^{3}+18 x^{2}-16 x+5 \\
& =(x-1)(x-1)(x-1)(x-5)
\end{aligned}
$$

Multiple Roots

$$
\begin{aligned}
f(x) & =x^{4}-8 x^{3}+18 x^{2}-16 x+5 \\
& =(x-1)(x-1)(x-1)(x-5)
\end{aligned}
$$

- This function has triple roots $(x=1)$ and one root $(x=5)$ as shown in the following figure.
- The figure shows the inflection point at $x=$ 1 that result in $f(x)=0$

Multiple Roots

- Problems with Multiple Roots
- Multiple roots pose difficulties for the methods discussed so far.
- The bisection method has difficulties with multiple roots because the function does not change sign at even multiple roots.
- The Newton-Raphson and secant methods have difficulties because the derivative at a multiple root is zero.

Multiple Roots

- Problems with Multiple Roots
- Since $f(x)$ reaches zero at a faster rate than $f(x)$ as x approaches the multiple root, it is impossible to check for the condition $f(x)=0$ and terminate the computations before $f(x)=0$.

Systems of Nonlinear Equations

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- The methods introduced so far for finding the roots of a function deal with single-variable equations of the type $f(x)=0$.
- Some engineering problems have two or more variables for which the roots are needed.

Systems of Nonlinear Equations

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

■ Two-Variable Problem

- For two-variable problems, the function has the form

$$
f_{i}(x, y)=0
$$

where the subscript i denotes the equation number, and both x and y are independent variables

Systems of Nonlinear Equations

A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- Example

The following is an example of a twovariable system of equations:

$$
\begin{aligned}
& x^{3}-3 x^{2}+x y=0 \\
& 4 x^{2}-4 x y^{2}+3 y^{2}=0
\end{aligned}
$$

The methods used for single-variable cannot be applied directly to find the values of x and y.

Systems of Nonlinear Equations

-A. J. Clark School of Engineering \bullet Department of Civil End Environmental Engineering

■ Example (cont'd)

$$
\begin{aligned}
& x^{3}-3 x^{2}+x y=0 \\
& 4 x^{2}-4 x y^{2}+3 y^{2}=0
\end{aligned}
$$

The equations can be solved for x and y as follows:

$$
\begin{aligned}
& x=\left(3 x^{2}-x y\right)^{1 / 3} \\
& y=\sqrt{\left(\frac{4 x^{2}+3 y^{2}}{4 x}\right)}
\end{aligned}
$$

Systems of Nonlinear Equations

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Example (cont'd)

Using initial guesses: $x=3$ and $y=3$, we have

$$
x=\left[3(3)^{2}-(3)(3)\right]^{1 / 3}=2.621
$$

$$
\begin{aligned}
& x=\left(3 x^{2}-x y\right)^{1 / 3} \\
& y=\sqrt{\left(\frac{4 x^{2}+3 y^{2}}{4 x}\right)}
\end{aligned}
$$

Using $x=2.621$ and $y=3$ in the second equation, gives

$$
y=\sqrt{\frac{4(2.621)^{2}+2(3)^{2}}{4(2.621)}}=2.280
$$

Systems of Nonlinear Equations

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
- Example (cont'd)

For the second iteration:

- Use $x=2.621$ and $y=2.280$, therefore
$x=\left[3(2.621)^{2}-(2.621)(2.280)\right]^{1 / 3}=2.446$
- Use $x=2.446$ and $y=2.280$, therefore

$$
y=\sqrt{\frac{4(2.446)^{2}+3(2.280)^{2}}{4(2.446)}}=2.010
$$

Systems of Nonlinear Equations

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Example (cont'd)

The solution will eventually converge to the following roots (see Table 4-9 of Textbook):

$$
\begin{aligned}
& x=2.16 \\
& y=1.82
\end{aligned}
$$

