CHAPTER 4e.

ROOTS OF EQUATIONS

by
Dr. Ibrahim A. Assakkaf
Spring 2001
ENCE 203 - Computation Methods in Civil Engineering II
Department of Civil and Environmental Engineering University of Maryland, College Park

Polynomial Reduction

- Example 2

Newton-Raphson iteration resulted in a root of x_{1} equals to 1.1211 for the following polynomial: $x^{4}-15 x^{2}-6 x+24$
Find a reduced polynomial.

Polynomial Reduction

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

Example 2 (cont'd)

Polynomial Reduction

- Example 2 (cont'd)
- The reduced polynomial $x^{3}+1.1211 x^{2}$ $13.7431 x-21.4074$ can be used to find additional roots for the original polynomial $x^{4}-15 x^{2}-6 x+24$.
- Any other method then can be used to find a root of the reduced polynomial, and the polynomial can be reduced again using polynomial reduction until all of the roots are found.

Synthetic Division

- Polynomial reduction assumes that an estimate of the root is reasonably exact and that the objective is to reduce the polynomial.
- However, the concept underlying polynomial reduction can be used to find the value of the root.
- This method is called synthetic division

Synthetic Division

\cdot A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering

- Derivation
- Consider the following $n^{\text {th }}$-order polynomial:

$$
\begin{equation*}
f_{n}(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0} \tag{1}
\end{equation*}
$$

- This polynomial can be reduced by dividing it by $\left(x-x_{0}\right)$; where x_{0} is an initial estimate of the root.

Synthetic Division

- Derivation (cont'd)
- The reduced polynomial $h_{n-1}(x)$ is of order $n-1$, and therefore

$$
\begin{equation*}
\frac{f_{n}(x)}{x-x_{0}}=h_{n-1}(x)+\frac{R_{0}}{x-x_{0}} \tag{2}
\end{equation*}
$$

where R_{0} is the remainder.

Synthetic Division

- Derivation (cont'd)
- Equation 2 can be written as

$$
\begin{equation*}
f_{n}(x)=\left(x-x_{0}\right) h_{n-1}(x)+R_{0} \tag{3}
\end{equation*}
$$

- The reduced polynomial $h_{n-1}(x)$ is given by

$$
\begin{equation*}
h_{n-1}(x)=c_{n-1} x^{n-1}+c_{n-2} x^{n-2}+\cdots+c_{1} x+c_{0} \tag{4}
\end{equation*}
$$

Synthetic Division

- Derivation (cont'd)
- If $h_{n-1}(x)$ is also reduced using the estimate of the root, the following ($n-2)^{\text {th }}$-order polynomial designated $g_{n-2}(x)$ can be found as

$$
\begin{equation*}
\frac{h_{n-1}(x)}{x-x_{0}}=g_{n-2}(x)+\frac{R_{1}}{x-x_{0}} \tag{5}
\end{equation*}
$$

where R_{1} is the remainder.

Synthetic Division

■ Derivation (cont'd)

- The reduced polynomial $g_{n-2}(x)$ can be expressed as

$$
\begin{equation*}
g_{n-2}(x)=d_{n-2} x^{x-2}+d_{n-3} x^{x-3}+\cdots+d_{1} x+d_{0} \tag{6}
\end{equation*}
$$

- Recall Eq. 3

$$
f_{n}(x)=\left(x-x_{0}\right) h_{n-1}(x)+R_{0}
$$

Synthetic Division

- Derivation (cont'd)
- Eq. 3 can rewritten as

$$
\begin{equation*}
h_{n-1}(x)=\frac{f_{n}(x)}{\left(x-x_{0}\right)}-\frac{R_{0}}{\left(x-x_{0}\right)} \tag{7}
\end{equation*}
$$

- Substituting $h_{n-1}(x)$ of Equation 7 into Equation 5, yields the following results:

Synthetic Division

- Derivation (cont'd)

$$
\begin{align*}
& \frac{h_{n-1}(x)}{x-x_{0}}=g_{n-2}(x)+\frac{R_{1}}{x-x_{0}} \\
& \frac{f_{n}(x)}{\left(x-x_{0}\right)}-\frac{R_{0}}{\left(x-x_{0}\right)} \\
& x-x_{0}
\end{aligned} g_{n-2}(x)+\frac{R_{1}}{x-x_{0}}, \begin{aligned}
& \frac{f_{n}(x)}{\left(x-x_{0}\right)^{2}}-\frac{R_{0}}{\left(x-x_{0}\right)^{2}}=g_{n-2}(x)+\frac{R_{1}}{x-x_{0}} \tag{8}
\end{align*}
$$

Synthetic Division

- Derivation (cont'd) $\quad \sqrt{\frac{R_{f}}{\left(x-x_{0}\right)^{2}}-\frac{R_{0}}{\left(x-x_{0}\right)^{2}}=g_{n_{2}(x)}(x)+\frac{R_{1}}{x-x_{0}}}$
- Multiplying both sides of Eq. 8 by $\left(x-x_{0}\right)^{2}$ and rearranging, gives

$$
\begin{equation*}
f_{n}(x)=\left(x-x_{0}\right)^{2} g_{n-2}(x)+\left(x-x_{0}\right) R_{1}+R_{0} \tag{9}
\end{equation*}
$$

- The derivative of Eq. 9 with respect to x is

$$
\begin{equation*}
f_{n}^{\prime}(x)=2\left(x-x_{0}\right) g_{n-2}(x)+\left(x-x_{0}\right)^{2} g_{n-2}^{\prime}(x)+R_{1} \tag{10}
\end{equation*}
$$

$$
\text { where } g_{n}^{\prime}(x)=\text { derivative with respect to } x
$$

Synthetic Division

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- Derivation (cont'd)
- Recall Equations 9 and 10, respectively:

$$
\begin{aligned}
& f_{n}(x)=\left(x-x_{0}\right)^{2} g_{n-2}(x)+\left(x-x_{0}\right) R_{1}+R_{0} \\
& f_{n}^{\prime}(x)=2\left(x-x_{0}\right) g_{n-2}(x)+\left(x-x_{0}\right)^{2} g_{n-2}^{\prime}(x)+R_{1}
\end{aligned}
$$

- At $x=x_{0}$, Eqs. 9 and 10 reduce to

$$
\begin{align*}
& f_{n}(x)=R_{0} \tag{11}\\
& f_{n}^{\prime}(x)=R_{1} \tag{12}
\end{align*}
$$

Synthetic Division

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
- Derivation (cont'd)
- Thus, based on Newton-Raphson method, the following expression can be obtained:

$$
\begin{equation*}
x_{1}=x_{0}-\frac{f_{n}(x)}{f_{n}^{\prime}(x)}=x_{0}-\frac{R_{0}\left(x_{i}\right)}{R_{1}\left(x_{i}\right)} \tag{1}
\end{equation*}
$$

where $R_{0}\left(x_{i}\right)$ is the remainder term based on an initial polynomial reduction with a root of x_{i} and $R_{1}\left(x_{i}\right)$ is the remainder term based on second polynomial reduction using again x_{i}.

Synthetic Division

- Synthetic Division Iterative Equation
-Eq. 13 indicates that, for an initial estimate of the root x_{0} an improved estimate can be obtained with Eq. 13 after computing R_{0} and R_{1} by polynomial reduction. The iterative root estimation is given by

$$
\begin{equation*}
x_{i+1}=x_{i}-\frac{R_{0}\left(x_{i}\right)}{R_{1}\left(x_{i}\right)} \tag{14}
\end{equation*}
$$

Synthetic Division

- Programming Considerations
- The solution procedure for synthetic division is easily programmed using the general form of Eqs. 1 to 13.
- By dividing $f_{n}(x)$, Eq. 1, by $\left(x-x_{0}\right)$, we get

$$
\begin{aligned}
& \quad c_{n-1} x^{n-1}+c_{n-2} x^{n-2}+c_{n-3} x^{n-3}+\cdots+c_{0} \\
& x-x_{0} \mid b_{n} x^{n}+b_{n-1} x^{n-1}+b_{n-2} x^{n-2}+\cdots+b_{0}
\end{aligned}
$$

Synthetic Division

人cer x -

- Programming Considerations
- It can be shown that the coefficients of the reduced polynomial c_{i} are related to the b_{i} values by

$$
\begin{align*}
& c_{n}=b_{n} \\
& c_{j}=b_{j}+x_{i} c_{j+1} \quad \text { for } j=(n-1),(n-2), \cdots, 1 \tag{15}
\end{align*}
$$

Where x_{i} is the estimate of the root in the $i^{\text {th }}$ iteration.

Synthetic Division

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
- Programming Considerations
- Similarly, the coefficients of Eq. 6 are related to those of Eq. 4 by

$$
\begin{align*}
& d_{n}=c_{n} \\
& d_{j}=c_{j}+x_{i} d_{j+1} \quad \text { for } j=(n-1),(n-2), \cdots, 1 \tag{16}
\end{align*}
$$

Synthetic Division

A. J. Clark School of Engineering • Department of Civil and Environmental Engineeris

- Programming Considerations
- The remainders R_{0} and R_{1} in the i ih iteration are given by

$$
\begin{align*}
& R_{0}=b_{0}+x_{i} c_{1} \\
& R_{1}=c_{1}+x_{i} d_{2} \tag{17}
\end{align*}
$$

Synthetic Division

Procedure for Synthetic Division

1. Input n, x_{0}, b_{j} for $j=0,1, \ldots, n$.
2. Compute the n values of c_{j} using Eq. 15 .
3. Compute R_{0}.
4. Compute the $(n-1)$ values of d_{j} using Eq. 16 .
5. Compute R_{1}.
6. Use Eq. 14 to compute a revised estimate of x_{i+1} of the root

Synthetic Division

Procedure for Synthetic Division

7. Check for convergence as follows:
a. If $\left|x_{i+1}-x_{i}\right| \leq$ tolerance, discontinue the iteration and use x_{i+1} as the best estimate of the root; or
b. If $\left|x_{i+1}-x_{i}\right|>$ tolerance, set $x_{i}=x_{i+1}$ and go to step 2 and continue the iteration process.

Synthetic Division

-A. J. Clark School of Engineering • Department of Civil and Environmental Engineering

- Example 1: Synthetic Division

Using synthetic division, find the three roots of the following polynomial:

$$
x^{3}-x^{2}-10 x-8=0
$$

Use an initial estimate of $x_{0}=6$ for the first root.

Synthetic Division

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering
- Example 1 (cont'd): Synthetic Division

$$
\begin{aligned}
& \begin{array}{c}
x^{2}+5 x+20 \\
x - 6 \longdiv { x ^ { 3 } - x ^ { 2 } - 1 0 x - 8 }
\end{array} \\
& x^{3}-6 x^{2} \\
& 5 x^{2}-10 x \\
& \frac{5 x^{2}-30 x}{20 x-8} \\
& \begin{array}{c}
20-120 \\
112=R_{0}
\end{array}
\end{aligned}
$$

Synthetic Division

- Example 1 (cont'd): Synthetic Division

$$
\begin{aligned}
& \\
& \frac{x^{2}-16 x}{11 x+20} \\
& 11 x-66 \\
& 86=R_{1}
\end{aligned}
$$

Synthetic Division

■ Example 1 (cont'd): Synthetic Division

$$
\begin{aligned}
& \frac{i=0, x_{0}=6:}{x^{3}}-x^{2}-10 x-8=0 \\
& b_{3}=1 \\
& b_{2}=-1 \\
& b_{1}=-10 \\
& b_{0}=-8
\end{aligned}
$$

Synthetic Division

- Example 1 (cont'd): Synthetic Division
- Note that R_{0} and R_{1} can be found using Eqs. 15, 16, and 17 as follows:

$$
\begin{aligned}
& \begin{array}{l}
c_{n}=b_{n} \\
c_{j}=b_{j}+x_{i} c_{j+1} \quad \text { for } j=(n-1),(n-2), \cdots, 1 \\
\quad c_{3}=b_{3}=1 \\
\quad c_{2}=b_{2}+6 c_{3}=-1+6(1)=5 \\
\quad c_{1}=b_{1}+6 c_{2}=-10+6(5)=20
\end{array}
\end{aligned}
$$

Synthetic Division

- Example 1 (cont'd): Synthetic Division

$$
\begin{aligned}
& \begin{array}{l}
d_{n}=c_{n} \\
d_{j}=c_{j}+x_{i} d_{j+1} \quad \text { for } j=(n-1),(n-2), \cdots, 1 \\
d_{3}=c_{3}=1 \\
d_{2}=c_{2}+6 d_{3}=5+6(1)=11 \\
d_{1}=c_{1}+6 d_{2}=20+6(11)=86
\end{array}
\end{aligned}
$$

Synthetic Division

- Example 1 (cont'd): Synthetic Division

$$
\begin{aligned}
& R_{0}=b_{0}+x_{i} c_{1} \\
& R_{1}=c_{1}+x_{i} d_{2}
\end{aligned}
$$

$$
\begin{aligned}
& R_{0}=-8+6(20)=-112 \\
& R_{1}=20+6(11)=86
\end{aligned}
$$

Synthetic Division

■ Example 1 (cont'd): Synthetic Division

- Thus, the revised estimate is

$$
\begin{aligned}
& x_{i+1}=x_{i}-\frac{R_{0}\left(x_{i}\right)}{R_{1}\left(x_{i}\right)} \\
& x_{1}=x_{0}-\frac{R_{0}\left(x_{0}\right)}{R_{1}\left(x_{0}\right)}=6-\frac{112}{86}=4.6977
\end{aligned}
$$

Synthetic Division

- Example 1 (cont'd): Synthetic Division

$$
\begin{gathered}
\frac{i=1, x_{1}=4.6977:}{x^{3}-x^{2}-10 x-8=0} \\
b_{3}=1 \\
b_{2}=-1 \\
b_{1}=-10 \\
b_{0}=-8
\end{gathered}
$$

Synthetic Division

■ Example 1 (cont'd): Synthetic Division

Synthetic Division

■ Example 1 (cont'd): Synthetic Division

Synthetic Division

- Example 1 (cont'd): Synthetic Division
- Note that R_{0} and R_{1} can be found using Eqs. 15, 16, and 17 as follows:

$$
\begin{aligned}
& c_{n}=b_{n} \\
& c_{j}=b_{j}+x_{i} c_{j+1} \quad \text { for } j=(n-1),(n-2), \cdots, 1 \\
& c_{3}=b_{3}=1 \\
& c_{2}=b_{2}+6 c_{3}=-1+4.6977(1)=3.6977 \\
& c_{1}=b_{1}+6 c_{2}=-10+4.6977(3.6977)=7.3707
\end{aligned}
$$

Synthetic Division

- Example 1 (cont'd): Synthetic Division

$$
\begin{array}{ll}
d_{n}=c_{n} & \\
d_{j}=c_{j}+x_{i} d_{j+1} \quad \text { for } j=(n-1),(n-2), \cdots, 1 \\
\hline
\end{array}
$$

$d_{3}=c_{3}=1$
$d_{2}=c_{2}+4.6977 d_{3}=3.6977+4.6977(1)=8.3954$
$d_{1}=c_{1}+4.6977 d_{2}=7.3707+4.6977(8.3954)=46.8098$

Synthetic Division

- Example 1 (cont'd): Synthetic Division

$$
\begin{aligned}
& R_{0}=b_{0}+x_{i} c_{1} \\
& R_{1}=c_{1}+x_{i} d_{2}
\end{aligned}
$$

$$
\begin{aligned}
& R_{0}=-8+4.6977(7.3707)=26.6253 \\
& R_{1}=7.3707+4.6977(8.3954)=46.8098
\end{aligned}
$$

Synthetic Division

■ Example 1 (cont'd): Synthetic Division

- Thus, the revised estimate is

$$
\begin{aligned}
& x_{i+1}=x_{i}-\frac{R_{0}\left(x_{i}\right)}{R_{1}\left(x_{i}\right)} \\
& x_{2}=x_{1}-\frac{R_{0}\left(x_{1}\right)}{R_{1}\left(x_{1}\right)}=4.6977-\frac{26.6253}{46.8098}=4.1289
\end{aligned}
$$

Synthetic Division

■ Example 1 (cont'd): Synthetic Division

- The result for the first root are shown in the following table.
- After six iterations, the root to seven significant digits is 4.

Synthetic Division

Synthetic Division

- Example 1 (cont'd): Synthetic Division
- To find the second root, a reduced polynomial now can be obtained from the table.
- The shaded area in the table contains the coefficients of this reduced polynomial, that is

$$
\begin{aligned}
& b_{2}=c_{3}=1 \\
& b_{1}=c_{2}=3 \\
& b_{0}=c_{1}=2
\end{aligned}
$$

Synthetic Division

- Example 1 (cont'd): Synthetic Division
- The new polynomial is

$$
x^{2}+3 x+2=0
$$

- Following the same procedure for synthetic division, the results are shown in the following table:
- The second root is -1 .

Synthetic Division

i	0	1	2	3	4	5	6
x_{i}	1	-0.20000000	-0.75384615	-0.95939730	-0.99847524	-0.99999768	-1.00000000
$\left.\varepsilon_{\mathrm{r}} \%\right)$	--	600.00000000	73.46938776	21.42502893	3.91376116	0.15224459	0.00023178
R_{0}	6	1.44000000	0.30674556	0.04225128	0.00152709	0.00000232	0.00000000
R_{1}	5	2.60000000	1.49230769	1.08120539	1.00304952	1.00000464	1.00000000
b_{2}	1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
b_{1}	3	3.00000000	3.00000000	3.00000000	3.00000000	3.00000000	3.00000000
b_{0}	2	2.00000000	2.00000000	2.00000000	2.00000000	2.00000000	2.00000000
c_{2}	1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
c_{1}	4	2.80000000	2.24615385	2.04060270	2.00152476	2.00000232	2.00000000
d_{2}	1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
d_{1}	5	2.60000000	1.49230769	1.08120539	1.00304952	1.00000464	1.00000000

$x^{2}+3 x+2=0$
ENCE 203 - CHAPTER 4e. ROOTS OF EQUATIONS

Synthetic Division

- Example 1 (cont'd): Synthetic Division
- To find the third root, a reduced polynomial now can be obtained from the table.
- The shaded area in the table contains the coefficients of this reduced polynomial, that is

$$
\begin{aligned}
& b_{1}=c_{2}=1 \\
& b_{0}=c_{1}=2
\end{aligned}
$$

Synthetic Division

\cdot A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering
■ Example 1 (cont'd): Synthetic Division

- The new polynomial is

$$
x+2=0
$$

- The root of this polynomial can easily be found as -2

Synthetic Division

■ Example 1 (cont'd): Synthetic Division

- Therefore, the three roots of the polynomial $x^{3}-x^{2}-10 x-8$ are
$x_{1}=4$
$x_{2}=-1$
$x_{3}=-2$

