CHAPTER 4d. ROOTS OF EQUATIONS

by

Dr. Ibrahim A. Assakkaf Spring 2001

ENCE 203 - Computation Methods in Civil Engineering II

Department of Civil and Environmental Engineering
University of Maryland, College Park

Newton-Raphson Method

- A. J. Clark School of Engineering Department of Civil and Environmental Engineering
- Although the bisection method will always converge on the root, the rate of convergence is very slow.
- A faster method for converging on a single root of a function is the Newton-Raphson method.
- Perhaps it is the most widely used method of all locating formulas.

© Assakkaf

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

■ Derivation of Newton-Raphson Method

- Graphical Derivation

From the previous figure,

$$\operatorname{Slope} = -f'(x_i) = \frac{df(x)}{dx}\Big|_{x=x_i} = \frac{f(x_i) - 0}{x_{i+1} - x_i}$$

or

$$x_{i+1} - x_i = \frac{f(x_i)}{-f(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

■ Derivation of Newton-Raphson Method

- Derivation using Taylor Series

Recall Taylor series expansion,

$$f(x_0 + h) = f(x_0) + hf^{(1)}(x_0) + \frac{h^2}{2!}f^{(2)}(x_0) + \frac{h^3}{3!}f^{(3)}(x_0) + \dots + \frac{h^n}{n!}f^{(n)}(x_0) + R_{n+1}$$

If we let $x_0 + h = x_i + h = x_{i+1}$ and terminate the series at its linear term, then

$$f(x_i + h) = f(x_i) + (x_{i+1} - x_i) f^{(1)}(x_i)$$

$$f(x_{i+1}) = f(x_i) + (x_{i+1} - x_i) f'(x_i)$$

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakkaf

Slide No. 106

Newton-Raphson Method

■ Derivation of Newton-Raphson Method

- Derivation using Taylor Series

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

■ Derivation of Newton-Raphson Method

- Derivation using Taylor Series

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Slide No. 108

Newton-Raphson Method

■ Derivation of Newton-Raphson Method

Note that since the root of the function relating f(x) and x is the value of x when $f(x_{i+1}) = 0$ at the intersection, hence,

$$f(x_{i+1}) = 0 = f(x_i) + (x_{i+1} - x_i)f'(x_i)$$

or

$$(x_{i+1}-x_i)f'(x_i) = -f(x_i)$$

or

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakkaf

■ Newton-Raphson Iteration

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

where

 x_i = value of the root at iteration i

 x_{i+1} = a revised value of the root at iteration i + 1

 $f(x_i)$ = value of the function at iteration i

 $f(x_i)$ = derivative of f(x) evaluated at iteration i

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Newton-Raphson Method

■ Example 1

Use the Newton-Raphson iteration method to estimate the root of the following function employing an initial guess of $x_0 = 0$:

$$f(x) = e^{-x} - x$$

Let's find the derivative of the function first,

$$f'(x) = \frac{df(x)}{dx} = -e^{-x} - 1$$

■ Example 1 (cont'd)

The initial guess is $x_0 = 0$, hence,

The initial gaess is
$$x_0 = 0$$
, hence,
$$\frac{i = 0:}{f(0) = e^{-(0)} - 0} = 1 \qquad f(x) = e^{-x} - x$$

$$f(0) = -e^{-(0)} - 1 = -1 - 1 = -2 \qquad f'(x) = \frac{df(x)}{dx} = -e^{-x} - 1$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{1}{-2} = 0.5$$

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Newton-Raphson Method

■ Example 1 (cont'd)

Now $x_1 = 0.5$, hence,

Now
$$x_1 - 0.5$$
, hence,

$$\frac{i = 1}{f(0)} = e^{-(0.5)} - (0.5) = 0.1065$$

$$f'(0) = -e^{-(0.5)} - 1 = -1.6065$$

$$f'(x) = \frac{df(x)}{dx} = -e^{-x} - 1$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_i)} = 0.5 - \frac{0.1065}{-1.6065} = 0.5663$$

■ Example 1 (cont'd) $f(x) = e^{-x} - x$

$$f(x) = e^{-x} - x$$

i = 2

Now
$$x_2 = 0.5663$$
, hence, $f'(x) = \frac{df(x)}{dx} = -e^{-x} - 1$

 $f(0) = e^{-(0.5663)} - (0.5663) = 0.001322$

$$f(0) = -e^{-(0.5663)} - 1 = -1.567622$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.5663 - \frac{0.001322}{-1.567622} = 0.5671$$

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Newton-Raphson Method

■ Example 1 (cont'd) $f(x) = e^{-x} - x$

$$f(x) = e^{-x} - x$$

Now
$$x_3 = 0.5671$$
, hence,

Now
$$x_3 = 0.5671$$
, hence,
 $i = 3$ $f'(x) = \frac{df(x)}{dx} = -e^{-x} - 1$

$$f(0) = e^{-(0.5671)} - (0.5671) = 0.00006784$$

$$f(0) = -e^{-(0.5671)} - 1 = -1.56716784$$
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)} = 0.5671 - \frac{0.00006784}{-1.56716784} = 0.5671$$

■ Example 1 (cont'd)

Thus, the approach rapidly converges on the true root of 0.5671 to four significant digits.

i	x_i	$f(x_i)$	$f'(x_i)$	Percent $ \varepsilon_r $
0	0	1	-2	
1	0.5	0.106531	-1.6065307	100
2	0.566311003	0.001305	-1.5676155	11.709291
3	0.567143165	1.96E-07	-1.5671434	0.14672871
4	0.56714329	4.44E-15	-1.5671433	2.2106E-05
5	0.56714329	0	-1.5671433	5.0897E-13

Hence, the root is 0.5671.

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakka

Slide No. 116

Newton-Raphson Method

■ Example 2

The following polynomial has a root within the interval $3.75 \le x \le 5.00$:

$$f(x) = x^3 - x^2 - 10x - 8 = 0$$

If a tolerance of 0.001 (0.1%) is required, find this root using both the bisection and Newton-Raphson methods. Compare the rate of convergence on the root between the two methods.

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakkaf

A. J. Clark School of Engineering • Department of Civil and Environmental Engineerin

■ Example 2 (cont'd)

Bisection Method:

$$x_{s} = 3.75, x_{e} = 5.00$$

$$i = 1$$

$$f(x) = x^{3} - x^{2} - 10x - 8 = 0$$

$$x_{m} = \frac{x_{s} + x_{e}}{2} = \frac{3.75 + 5.00}{2} = 4.375$$

$$f(x_{s}) = f(3.75) = (3.75)^{3} - (3.75)^{2} - 10(3.75) - 8 = -6.828$$

$$f(x_{m}) = f(4.375) = (4.375)^{3} - (4.375)^{2} - 10(4.375) - 8 = 12.850$$

$$f(x_{e}) = f(5) = (5)^{3} - (5)^{2} - 10(5) - 8 = 42.000$$

$$f(x_{s})f(x_{m}) < 0 \text{(negative)}$$

$$f(x_{m})f(x_{e}) > 0 \text{(positive)}$$

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakkaf

Newton-Raphson Method

■ Example 2 (cont'd)

Bisection Method:

$$f(x) = x^3 - x^2 - 10x - 8 = 0$$

$$x_s = 3.75$$
 $x_e = 4.375$
 $i = 2$
 $x_m = \frac{x_s + x_e}{2} = \frac{3.75 + 4.375}{2} = 4.063$
 $f(x_s) = f(3.75) = -6.828$
 $f(x_m) = f(4.063) = 1.918$
 $f(x_e) = f(4.375) = 12.850$

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

■ Example 2 (cont'd)

Bisection Method:

Iteration <i>i</i>	x_s	<i>x</i> _{<i>m</i>}	x_e	$f(x_s)$	$f(x_m)$	$f(x_e)$	$f(x_s)f(x_m)$	$f(x_m)f(x_e)$	error $\boldsymbol{\varepsilon}_{d}$	error $\boldsymbol{\varepsilon}_{d}$
1	3.7500	4.3750	5.0000	-6.8281	12.8496	42.0000	-	+	_	_
2	3.7500	4.0625	4.3750	-6.8281	1.9182	12.8496	-	+	0.31250	7.69
3	3.7500	3.9063	4.0625	-6.8281	-2.7166	1.9182	+	-	0.15625	4.00
4	3.9063	3.9844	4.0625	-2.7166	-0.4661	1.9182	+	-	0.07813	1.96
5	3.9844	4.0234	4.0625	-0.4661	0.7092	1.9182	-	+	0.03906	0.97
6	3.9844	4.0039	4.0234	-0.4661	0.1174	0.7092	-	+	0.01953	0.49
7	3.9844	3.9941	4.0039	-0.4661	-0.1754	0.1174	+	-	0.00977	0.24
8	3.9941	3.9990	4.0039	-0.1754	-0.0293	0.1174	+	-	0.00488	0.12
9	3.9990	4.0015	4.0039	-0.0293	0.0440	0.1174	-	+	0.00244	0.06
10	3.9990	4.0002	4.0015	-0.0293	0.0073	0.0440	-	+	0.00122	0.03
11	3.9990	3.9996	4.0002	-0.0293	-0.0110	0.0073	+		0.00061	0.02
12	3.9996	3.9999	4.0002	-0.0110	-0.0018	0.0073	+	-	0.00031	0.01
13	3.9999	4.0001	4.0002	-0.0018	0.0027	0.0073	-	+	0.00015	0.00
14	3.9999	4.0000	4.0001	-0.0018	0.0005	0.0027	-	+	0.00008	0.00
15	3.9999	4.0000	4.0000	-0.0018	-0.0007	0.0005	+	-	0.00004	0.00

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Newton-Raphson Method

■ Example 2 (cont'd)

$$f(x) = x^3 - x^2 - 10x - 8$$

Newton-Raphson Iteration: $f'(x) = 3x^2 - 2x - 10$

$$f'(x) = 3x^2 - 2x - 10$$

The initial guess is $x_0 = 3.75$, hence,

i = 0:

$$f(3.75) = (3.75)^3 - (3.75)^2 - 10(3.75) - 8 = -6.8281$$

$$f(3.75) = 3(3.75)^2 - 2(3.75) - 10 = 24.6875$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 3.75 - \frac{-6.8281}{24.6875} = 4.0266$$

■ Example 2 (cont'd)

$$f(x) = x^3 - x^2 - 10x - 8$$

Newton-Raphson Iteration:

$$f'(x) = 3x^2 - 2x - 10$$

Now we have $x_1 = 4.0266$, hence,

$$i = 1$$
:

$$f(4.0266) = 0.8052$$

$$f(4.0266) = 30.5869$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 4.0266 - \frac{0.8052}{30.5869} = 4.0003$$

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakki

Slide No. 122

Newton-Raphson Method

■ Example 2 (cont'd)

i	x_i	$f(x_i)$	$f'(x_i)$	$ \mathbf{\epsilon}_d $	Percent $ \varepsilon_r $
0	3.75	-6.8281	24.688		
1	4.0266	0.8053	30.587	0.2766	6.87
2	4.0003	0.0077	30.006	0.0263	0.66
3	4	7E-07	30	0.0003	0.01
4	4	3E-14	30	0.0000	0.00
5	4	0	30	0.0000	0.00

The rate of convergence with Newton-Raphson iteration is much faster than the bisection method.

N-R method converges to the exact root in 3 iterations.

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

■ Pitfalls of the Newton-Raphson Method

- Nonconvergence
 - Nonconvergence can occur if the initial estimate is selected such that the derivative of the function equals zero.
 - In such case, $f(x_i)$ would be zero and $f(x_i)/f(x_i)$ would go to infinity.

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{f(x_i)}{0} \Longrightarrow \infty$$

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakki

Slide No. 124

Newton-Raphson Method

■ Pitfalls of the Newton-Raphson Method

- Nonconvergence

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

f(x)

■ Pitfalls of the Newton-Raphson Method

- Nonconvergence
 - Nonconvergence can also occurs if $f(x_i) / f'(x_i)$ equals $-f(x_{i+1}) / f'(x_{i+1})$ as shown

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Slide No. 12

Newton-Raphson Method

■ Pitfalls of the Newton-Raphson Method

- Excessive Iteration
 - A large number of iterations will be required if the value of $f'(x_i)$ is much larger than $f(x_i)$.
 - In this case, $f(x_i) / f'(x_i)$ is small, which leads to a smaller adjustment at each iteration.
 - This situation can occur, for example, when the root of a polynomial is near zero.

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \text{small number}$$

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

A potential problem in utilizing Newton-Raphson method is the evaluation of the derivative.

■ Although this is not true for polynomials and many other functions, there are certain functions whose derivatives may be extremely difficult or inconvenient to evaluate.

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

© Assakka

Slide No. 128

Secant Method

■ The secant method is similar to the Newton-Raphson method with the difference that the derivative *f*(*x*) is numerically evaluated, rather computed analytically.

© Assakkaf

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

■ Development of the Secant Method

 Using the geometric similarities of two triangles of the previous figure, Hence

$$\frac{f(x_{i-1})}{x_{i+1} - x_{i-1}} = \frac{f(x_i)}{x_{i+1} - x_i}$$

or

$$x_{i+1} = x_i - \frac{f(x_i)[x_{i-1} - x_i]}{f(x_{i-1}) - f(x_i)}$$

© A

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

■ The Secant Method

A new estimate of the root can be obtained using values of the function $f(x_i)$ and $f(x_{i-1})$ at two other estimates x_i and x_{i-1} of the root, and applying the following iterative procedure:

$$x_{i+1} = x_i - \frac{f(x_i)[x_{i-1} - x_i]}{f(x_{i-1}) - f(x_i)}$$

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

© Assakka

01140 110

Secant Method

A. J. Clark School of Engineering • Department of Civil and Environmental Enginee

■ Example 1

Use the secant method to estimate the root of the following function:

$$f(x) = e^{-x} - x$$

Start with initial estimates of $x_{i-1} = 0$ and $x_i = 1$.

© Assakkaf

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

■ Example 1 (cont'd)

First iteration, *i* = 1:

$$x_{0} = 0 \Rightarrow f(0) = e^{-(0)} - (0) = 1$$

$$x_{1} = 1 \Rightarrow f(1) = e^{-(1)} - 1 = -0.63212$$

$$x_{2} = x_{1} - \frac{f(x_{1})[x_{0} - x_{1}]}{f(x_{0}) - f(x_{1})} = 1 - \frac{-0.63212[0 - 1]}{1 - (-0.63212)} = 0.61270$$

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Secant Method

■ Example 1 (cont'd)

Second iteration, i = 2:

$$x_{1} = 1, \Rightarrow f(x_{1}) = -0.63212$$

$$x_{2} = 0.61270, \Rightarrow f(0.61270) = -0.07081$$

$$x_{3} = x_{2} - \frac{f(x_{2})[x_{1} - x_{2}]}{f(x_{1}) - f(x_{2})} = 0.61270 - \frac{-0.07081[1 - 0.61270]}{-0.63212 - (-0.07081)} = 0.56384$$

■ Example 1 (cont'd)

Third iteration, i = 3:

$$x_2 = 0.61270, \Rightarrow f(x_1) = -0.07081$$

 $x_3 = 0.56384, \Rightarrow f(0.56384) = 0.00518$

$$x_3 = 0.56384, \Rightarrow f(0.56384) = 0.00518$$

 $x_4 = x_3 - \frac{f(x_3)[x_2 - x_3]}{f(x_2) - f(x_3)} = 0.56384 - \frac{0.00518[0.61270 - 0.56384]}{-0.07081 - 0.00518} = 0.56717$

$$f(0.56717) = -0.00004$$

Hence, the root is 0.56717 to 4 significant digits.

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

Polynomial Reduction

- After one root of a polynomial has been found, the process can be repeated using a new estimate.
- However, if proper consideration is not given to the selection of the new initial estimate of the second root, then application of some method might result in the same root being found.

Polynomial Reduction

■ Definition

Polynomial reduction states that if the polynomial f(x) equals zero and root x_1 is the root of f(x), then there is a reduced polynomial $f^*(x)$ such that $(x - x_1) f^*(x) = 0$, where

 $f^*(x) = \frac{f(x)}{x - x_1}$

If f(x) is a polynomial of order n, the reduced polynomial is of order n-1.

ENCE 203 - CHAPTER 4d. ROOTS OF EQUATIONS

© Assakka

Slide No. 13

Polynomial Reduction

■ Example

Using Newton-Raphson iteration, a root of $x_1 = 4$ was found for the following polynomial: $x^3 - x^2 - 10x - 8$. Reduce this polynomial.

$$\begin{array}{r}
x^2 + 3x^2 + 2 \\
x - 4 \overline{\smash)x^3 - x^2 - 10x - 8} \\
\underline{x^3 - 4x^2} \\
3x^2 - 10x \\
\underline{3x^2 - 12x} \\
2x - 8 \\
\underline{2x - 8} \\
2x - 8
\end{array}$$

0 = error

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

Polynomial Reduction

■ Example

- The reduced polynomial $x^2 + 3x^2 + 2$ can be used to find additional roots for the original polynomial $x^3 x^2 10x 8$.
- Any other method then can be used to find a root of the reduced polynomial, and the polynomial can be reduced again using polynomial reduction until all of the roots are found.

ENCE 203 – CHAPTER 4d. ROOTS OF EQUATIONS

© Assakkaf