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Determinants

� Every square matrix has associated 
with it a scalar called determinant.

� There are different methods to find the 
determinant of a square matrix.

� Among these methods, is the widely 
used method of finding the determinant 
with expansion by cofactors.
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Determinants

� Notation
� Given a square matrix A, the determinant 

of this matrix is denoted by either
det(A)    or     |A|

� For example if

then 
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Determinants

� Notation

� Note that A represents a matrix, a 
rectangular array, an entity unto itself, 
while det(A) represents a scalar, a number 
associated with the matrix A.

� The difference is only in the form.
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Determinants

� Determinant of 1 × 1 matrix
� The determinant of 1 × 1 matrix A = [a] is 

the scalar a.
� Example

� The determinant of the matrix [5] is 5 and the 
determinant of the matrix [-0.23] is �0.23 
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� Determinant of 2 × 2 matrix
By definition, the determinant of a 2 × 2 
matrix is given by

bcad
dc
ba

−=
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Determinants

� Example: 2 × 2 matrix
Find det(A) if 
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� Method for Finding the Determinant of 
Higher-order Matrices
� Expansion by Cofactor
� Definition:

�Given a matrix A, a minor is the determinant of 
any square submatrix of A�

That is, given a square matrix A, a minor is the 
determinant formed by A by removal of an 
equal number of rows and columns
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Determinants

� Expansion by Cofactor
� Examples: Minors

If

then 

are both minors since
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are both square submatrices of A, while

are not minors since

is not a submatrix of A and [1   2], although a 
submatrix of A, is not square.
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Determinants

� Expansion by Cofactor
� Definition:

�Given a matrix A = [aij], the cofactor of the 
element aij is a scalar obtained by multiplying 
together the term (-1)i+j and the minor obtained 
from A by removing the ith row and jth column�

In other words, to compute the cofactor of the 
element aij we first form a submatrix of A by 
crossing out both the row and column in which the 
element aij appears.  Then we find the determinant 
of the submatrix and finally multiply it by the 
number (-1)i+j
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� Example 1: Cofactor
� Find the cofactor of the element 4 in the 

following matrix
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A

We first note that 4 appears in the (2,1) position.
The submatrix obtained by crossing out the second row 
and first column is
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Determinants

� Example 1 (cont�d): Cofactor
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Since 4 appears in the (2,1) position, i = 2, and j =1.
Thus, (-1)i+j = (-1)2+1 = (-1)3 = -1
Therefore, the cofactor of 4

= (-1) × (-6) = 6
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Determinants

� Example 2: Cofactor
� Find the cofactor of the element 9 in the 

following matrix
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A

We first note that 9 appears in the (3,3) position.
The submatrix obtained by crossing out the third row and
third column is
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Determinants

� Example 2 (cont�d): Cofactor
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Since 9 appears in the (3,3) position, i = 3, and j =3.
Thus, (-1)i+j = (-1)3+3 = (-1)6 = 1
Therefore, the cofactor of 9

= (1) × (-3) = -3
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Determinants

� Expansion by Cofactors
� To find the determinant of a square 

matrix A of arbitrary order:
1. Pick any one row or any one column of the 

matrix.
2. For each element in the row or column 

selected, find its cofactor.
3. Multiply each element in the row or column 

selected by its cofactor and sum the results.
4. This sum is the determinant of A.
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Determinants

� Example 3: 3 × 3 Matrix
Find the determinant of the following 
matrix:
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A

Expanding by the first row, the determinant can be 
evaluated as follows: 
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Determinants

� Example 3 (cont�d): 3 × 3 Matrix
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� Example 3 (cont�d): 3 × 3 Matrix
Therefore,

( )

[ ] [ ] [ ]
312213322113312312332112322311332211

312232211331233321123223332211

3231
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13

3331
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Determinants

� Example 4: 4 by 4 Matrix
Find det(A) if 
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A

First, check to see which row or column contains the most
zeros and expand by it.
Thus expanding by the second column gives
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� Example 4 (cont�d): 4 by 4 Matrix
( ) ( ) ( )

( ) ( )
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� Example 4 (cont�d): 4 by 4 Matrix

( ) ( ) ( )

[ ] [ ] [ ]
[ ] [ ] [ ]
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� Example 4 (cont�d): 4 by 4 Matrix

( ) ( ) ( )

[ ] [ ]
[ ] [ ]

8                  
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Determinants

� Example 4 (cont�d): 4 by 4 Matrix
Therefore,

( ) ( ) ( )

( ) ( )
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� Properties of Determinants
1. If the elements of any two rows (columns) 

are equal, the determinant equals zero.

( ) 0det

353
2142
121

==
















=
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Determinants

� Properties of Determinants
2. If the values in any row (column) are 

proportional to the corresponding values 
in another row (column), the determinant 
equals zero.
















=

653
4142
221

A

det[AAAA] = 0 because column 3 = 2 × column 1
or the first column is proportional to the third column
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Determinants

� Properties of Determinants
3. If all the elements in any row (column) 

equal zero, the determinant equal zero.

( ) 0det
5029

11037
6056
50111

=



















=

A
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� Properties of Determinants
4. If a matrix B is obtained from a matrix A

by multiplying every element in one row 
(one column) of A by a constant c, then       
|B| = c|A|.

( ) [ ] 14)4(2)5(322det

54
)2(2)3(2

54
46
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=−==
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=
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� Properties of Determinants
5. The value of the determinant is not 

changed by adding any row (column) 
multiplied by a constant c to another row 
(column).

7)4(2)5(3    ,
54
23

=−=







= AA

Multiplying the second row by (-1) and adding it to the first
Row produces the following matrix BBBB

ABB ==−−−=






 −−
= 7)4)(3()5(1      ,

54
31
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Determinants

� Properties of Determinants
6. If any two rows (columns) are 

interchanged, the sign of the determinant 
will be changed.

7)3(5)2(4
23
54

   and  7)4(2)5(3
54
23

−=−==−=
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� Properties of Determinants
7. For an n × n A and any constant c, the      

det(cA) = cn det(A).

[ ]

[ ] 63)12(6)15(9  ,
1512
627

)5(3)4(3
)2(3)3(3

       

or

63)4(2)5(33   ,
54
23

3       22

=−=
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� Properties of Determinants
8. The determinant of square matrix equals 

that of its transpose, that is, |A| = |AT|

7)2(45)3(  ,
52
43

7)4(2)5(3   ,
54
23

=−=







=

=−=







=

BA
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T
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Determinants

� Properties of Determinants
9. If a square matrix A is placed in the 

diagonal form using property 5, then the 
product of the elements on the diagonal 
equals the determinant of A

7)4(2)5(3A    ,
54
23

=−=







=A

Multiplying the first row by �4/3 and adding it to the second
Row produces a matrix with a zero element in the second
Row and first column as follows:
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Determinants

� Then, multiplying the second row by �6/7 and adding it 
to the first row results in the following diagonal matrix:

� Therefore, the determinant of A is
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Determinants

� Properties of Determinants
10. If a matrix A has a zero determinant, then 
A is said to be a singular matrix, that is, 
the inverse of A does not exist.
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� Definition
� The rank of a matrix A, designated r(A), is 

the order of the largest nonzero minor of A.
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Rank of a Matrix

� Example 1: Rank of a Matrix
Find the rank of 

















−
−−

−
=

862
431
431

A

The largest minor that can be formed from A is of order 3.
There is only one such minor, namely det(A), and it is zero.
Thus, the rank of A will be 2 or less.  Checking all the 9 minors
of order 2, we find that each of them is also equal to zero.
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� Example (cont�d): Rank of a Matrix

0)2(4)8(1
82

41
 i.e.,

0)1(3)3(1
31

31
 i.e.,

=−−−=
−

−

=−−=
−−

Hence, the rank of A will be 1 or zero.
Checking minors of order 1, we find that one which is not zero
(in fact all are nonzero); therefore,

( ) 1=Ar
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Rank of a Matrix

� Example 2: Rank of a Matrix
Find the rank of 

















−−−
−
−

=
38141

541123
34521

A

All 10 minors of order 3 equal zero, so the rank of A will be 2 or 
less.  Checking all minors of order 2, we find one of them, namely

differs from zero, so r(A) = 2

14)1(2)4(3
41

23
−=−−=

−
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and Adjoint Matrices

� Definition
The cofactor matrix associated with an n ×
n matrix A is an n × n matrix Ac obtained 
from A by replacing each element of A by 
its cofactor.
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Inverse of a Matrix by Cofactor 
and Adjoint Matrices

� Example: Cofactor Matrix
What is the cofactor matrix of A, if
















−=

631
452
213

A
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Inverse of a Matrix by Cofactor 
and Adjoint Matrices
� Example (cont�d): Cofactor Matrix
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17166
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111618
    

52
13

)1(
42
23

)1(
45
21

)1(

61
13

)1(
61
23

)1(
63
21

)1(

31
52

)1(
61
42

)1(
63
45

)1(

332313

322212

312111
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Inverse of a Matrix by Cofactor 
and Adjoint Matrices

� Definition
The adjoint of an n × n matrix A is the 
transpose of the cofactor matrix of A.
If the adjoint of A is denoted by Aa, then

( )Tca AA =
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Inverse of a Matrix by Cofactor 
and Adjoint Matrices

� Example: Adjoint of a Matrix
Find Aa for matrix A given the previous 
example.

















−−
−
−

=
17166

8160
111618

 example previous From cA

( )
















−−
−
−

==
17811
161616
6018

 Therefore, Tca AA
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Inverse of a Matrix by Cofactor 
and Adjoint Matrices

� Theorem
If |A| ≠ 0, then the inverse of A may be 
obtained by dividing the adjoint of A by the 
determinant of A, that is 

A
AA

a

=−1
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Inverse of a Matrix by Cofactor 
and Adjoint Matrices

� Example: Inverse of a Matrix
Find the inverse of the following matrix:
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A

( )
( ) ( )
( ) ( )
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=








−−
−−

=

−=−=

++
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37
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57

2)1(3)1(
5)1(7)1(

1)5(3)7(2det

2212

2111

Tca

c

AA

A

A
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−
=

−









−

−
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25
37

1
25
37

1

A
AA
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