

Matrix Operations

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

Matrix Inversion

- The inverse of an $n \times n$ matrix \boldsymbol{A} is an $n \times n$ matrix B having the property that

$$
A B=B A=I
$$

- \boldsymbol{B} is called the inverse of \boldsymbol{A} and is usually denoted by \boldsymbol{A}^{-1}.
- Hence,

$$
A^{-1} A=I
$$

Matrix Operations

Matrix Inversion

- Properties:
- If a square matrix \boldsymbol{A} has an inverse, it is said to be invertible or nonsingular.
- If it dose not possess an inverse, it is singular.
- In particular, the identity or unit matrix I is invertible and is its own inverse since

$$
I I=I
$$

Matrix Operations

- A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering

■ Matrix Inversion

- The inverse can be determined by forming n^{2} simultaneous equations and solving for n^{2} unknowns.
- Let

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \text { and } \quad A^{-1}=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]
$$

Matrix Operations

- Matrix Inversion
- Therefore,
$A^{-1} A=I$
$A^{-1} A=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{ll}c_{11} a_{11}+c_{12} a_{21} & c_{11} a_{12}+c_{12} a_{22} \\ c_{21} a_{11}+c_{22} a_{21} & c_{21} a_{12}+c_{22} a_{22}\end{array}\right]$
or
$\left[\begin{array}{ll}c_{11} a_{11}+c_{12} a_{21} & c_{11} a_{12}+c_{12} a_{22} \\ c_{21} a_{11}+c_{22} a_{21} & c_{21} a_{12}+c_{22} a_{22}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Matrix Operations

Matrix Inversion

- Hence, the following for simultaneous equations can be solved for $c_{i j}$ given the values $a_{i j}$ of the original matrix \boldsymbol{A} :

$$
\begin{aligned}
c_{11} a_{11}+c_{12} a_{21} & =1 \\
c_{11} a_{12}+c_{12} a_{22} & =0 \\
c_{21} a_{11}+c_{22} a_{21} & =0 \\
c_{21} a_{12}+c_{22} a_{22} & =1
\end{aligned}
$$

-

Matrix Operations

Example 1: Matrix Inversion
Find \boldsymbol{A}^{-1} if $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$

$$
\begin{aligned}
& A^{-1} A=I \\
& {\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 c_{11}+5 c_{12} & 3 c_{11}+7 c_{12} \\
2 c_{21}+5 c_{22} & 3 c_{21}+7 c_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

Matrix Operations

- Example 1 (cont'd): Matrix Inversion

$$
\begin{aligned}
2 c_{11}+5 c_{12} & =1 \\
3 c_{11}+7 c_{12} & \\
& =0 \\
& 2 c_{21}+5 c_{22}
\end{aligned}=0
$$

From which,
$c_{11}=-7, c_{12}=3, c_{21}=5$, and $c_{22}=-2$
Therfore, $A^{-1}=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right]$

Matrix Operations

Example 2: Matrix Inversion

$$
\begin{aligned}
& \text { Find } \boldsymbol{A}^{-1} \text { if } A=\left[\begin{array}{ccc}
3 & 1 & 2 \\
-2 & 5 & 4 \\
1 & 3 & 6
\end{array}\right] \\
& A^{-1} A=I \\
& {\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & 2 \\
-2 & 5 & 4 \\
1 & 3 & 6
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
3 c_{11}-2 c_{12}+c_{13} & c_{11}+5 c_{12}+3 c_{13} & 2 c_{11}+4 c_{12}+6 c_{13} \\
3 c_{21}-2 c_{22}+c_{13} & c_{21}+5 c_{22}+3 c_{23} & 2 c_{21}+4 c_{22}+6 c_{23} \\
3 c_{31}-2 c_{32}+c_{33} & c_{31}+5 c_{32}+3 c_{33} & 2 c_{31}+4 c_{32}+6 c_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Matrix Operations

-
- Example 2 (cont'd): Matrix Inversion

3 Sets of Simultaneous Equations

Matrix Operations

Example 2 (cont'd): Matrix Inversion

$$
\begin{aligned}
& 3 c_{11}-2 c_{12}+c_{13}=1 \\
& c_{11}+5 c_{12}+3 c_{13}=0 \\
& 2 c_{11}+4 c_{12}+6 c_{13}=0
\end{aligned} \quad \Longrightarrow \begin{aligned}
& c_{11}=0.3750 \\
& c_{12}=0 \\
& c_{13}=-0.1250 \\
& 3 c_{21}-2 c_{22}+c_{13}=0 \\
& c_{21}+5 c_{22}+3 c_{23}=1 \\
& 2 c_{21}+4 c_{22}+6 c_{23}=0
\end{aligned} \quad \begin{aligned}
& c_{21}=0.3333 \\
& c_{22}=0.3333 \\
& c_{23}=-0.3333
\end{aligned}
$$

Matrix Operations

■ Example 2 (cont'd): Matrix Inversion

$$
\begin{aligned}
& 3 c_{31}-2 c_{32}+c_{33}=0 \\
& c_{31}+5 c_{32}+3 c_{33}=0 \Longrightarrow \begin{array}{l}
c_{31}=-0.2292 \\
2 c_{31}+4 c_{32}+6 c_{33}=1
\end{array} \quad \begin{array}{l}
c_{32}=-0.1667 \\
c_{33}=0.3542
\end{array} .
\end{aligned}
$$

Therefore,
$A^{-1}=\left[\begin{array}{lll}c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33}\end{array}\right]=\left[\begin{array}{ccc}0.3750 & 0 & -0.1250 \\ 0.3333 & 0.3333 & -0.3333 \\ -0.2292 & -0.1667 & 0.3542\end{array}\right]$

Matrix Operations

Matrix Singularity

- If the inverse of a matrix exists, then the matrix is nonsingular.
- If the inverse does not exist, then the matrix is singular.

Matrix Operations

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering
- Matrix Singularity
- Matrix Singularity and System of Equations
- One implication of matrix singularity in solving a system of simultaneous equations is that a unique solution for the equation does not exist.
- If the matrix is singular, the system of equation will not have a solution.

Matrix Operations

Matrix Singularity
$-\quad$ Matrix Singularity and System of
Equations

$$
\begin{aligned}
& 2 X_{1}+3 X_{2}=a \\
& 4 X_{1}+6 X_{2}=b
\end{aligned}
$$

If $2 a=b$, then there are an infinite number of solutions.
For example, three possibilities are:

1) $X_{1}=2, X_{2}=1, a=7$, and $b=14$
2) $X_{1}=-1, X_{2}=4, a=10$, and $b=20$
3) $X_{1}=0, X_{2}=-2, a=-6$, and $b=-12$

Matrix Operations

\cdot A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- Matrix Singularity
- Matrix Singularity and System of Equations

$$
\begin{aligned}
& 2 X_{1}+3 X_{2}=a \\
& 4 X_{1}+6 X_{2}=b
\end{aligned} \quad A=\left[\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right]
$$

If $a \neq b$, then there is no feasible solution.
For example, if $a=2$ and $b=3$, there are no values of X_{1} and X_{2} that can satisfy the equality of the two equations.

CES

Matrix Operations

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

Trace of a Matrix

- The trace of square matrix is the sum of the diagonal elements as defined by

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Matrix Operations

- Trace of a Matrix
- Example:

Find the trace of the following matrices:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 1 & 2 \\
-2 & 5 & 4 \\
1 & 3 & 6
\end{array}\right] \quad B=\left[\begin{array}{cc}
11 & 3 \\
-5 & -5
\end{array}\right] \\
& \operatorname{tr}(A)=3+5+6=14 \\
& \operatorname{tr}(B)=11+(-5)=6
\end{aligned}
$$

Matrix Operations

Matrix Augmentation

- Matrix augmentation is the addition of a column or columns to the initial matrix

$$
\left[\begin{array}{ccccc|ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 c} & c_{11} & c_{12} & c_{13} & \ldots & c_{1 c} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 c} & c_{21} & c_{22} & c_{23} & \ldots & c_{2 c} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 c} & c_{31} & c_{32} & c_{33} & \ldots & c_{3 c} \\
\vdots & \vdots \\
a_{r 1} & a_{r 2} & a_{r 3} & \ldots & a_{r c} & c_{r 1} & c_{r 2} & c_{r 3} & \ldots & c_{r c}
\end{array}\right]
$$

Matrix Operations

- Examples: Matrix Augmentation

$$
\begin{array}{ll}
A=\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 4 & 1 \\
2 & 3 & 4
\end{array}\right] & B=\left[\begin{array}{ccc}
0 & 3 & 4 \\
1 & 4 & 1 \\
2 & 3 & 10
\end{array}\right] \\
A_{a}=\left[\begin{array}{lll|lll}
2 & 3 & 1 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 & 1 & 0 \\
2 & 3 & 4 & 0 & 0 & 1
\end{array}\right] & B_{a}=\left[\begin{array}{ccc|c}
0 & 3 & 1 & 2 \\
1 & 4 & 1 & 3 \\
2 & 3 & 10 & 6
\end{array}\right]
\end{array}
$$

Matrix Operations

- Submatrices and Partitioning

- Given any matrix \boldsymbol{A}, a submatrix of \boldsymbol{A} is a matrix obtained from \boldsymbol{A} by removing any number of rows or columns.
- Thus if
$A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16\end{array}\right], \quad B=\left[\begin{array}{cc}10 & 12 \\ 14 & 16\end{array}\right], \quad$ and $\quad C=\left[\begin{array}{lll}2 & 3 & 4\end{array}\right]$

Matrix Operations

 Submatrices and Partitioning

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right], \quad B=\left[\begin{array}{cc}
10 & 12 \\
14 & 16
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right]
$$

- Then \boldsymbol{B} and \boldsymbol{C} are both submatrices of \boldsymbol{A}
$-\boldsymbol{B}$ is obtained by removing from \boldsymbol{A} the first and second rows together with the first and third columns
$-\boldsymbol{C}$ is obtained by by removing from \boldsymbol{A} the second, third, and fourth rows together with the first column.

Matrix Operations

- Submatrices and Partitioning
- A matrix can be partitioned by separating it into smaller matrices.
- For example, matrix \boldsymbol{A} can be partitioned into four other matrices as

$$
A=\left[\left.\frac{A_{11}}{A_{21}} \right\rvert\, \frac{A_{12}}{A_{22}}\right]
$$

Matrix Operations

- A. J. Clark School of Engineering • Department of Civil and Environmental Engineering
- Example: Matrix Partition

$$
\begin{array}{cc}
A=\left[\begin{array}{ccc}
1 & 0.2 & 0.9 \\
0.2 & 1 & 0.8 \\
0.9 & 0.8 & 1
\end{array}\right] \Longrightarrow A=\left[\begin{array}{cc|c}
1 & 0.2 & 0.9 \\
0.2 & 1 & 0.8 \\
\hline 0.9 & 0.8 & 1
\end{array}\right] \\
A_{11}=\left[\begin{array}{cc}
1 & 0.2 \\
0.2 & 1
\end{array}\right] & A_{12}=\left[\begin{array}{c}
0.9 \\
0.8
\end{array}\right] \\
A_{21}=\left[\begin{array}{ll}
0.9 & 0.8
\end{array}\right] & A_{22}=[1]
\end{array}
$$

Vectors

- Examples: Vectors

$$
\begin{array}{ll}
V_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] & V_{2}=\left[\begin{array}{llll}
t & 2 t & -t & 0
\end{array}\right] \\
Z_{1}=\left[\begin{array}{ll}
-0.5 & 4
\end{array}\right] \quad Z_{2}=\left[\begin{array}{l}
3 \\
1 \\
6 \\
1
\end{array}\right]
\end{array}
$$

Vectors

.

- Vectors in Space
- The name vector indicates that a onedimensional matrix with n elements can be represented as a vector in n-dimensional space, with one end of the vector at a point and the the other end at another point.

$$
V_{P_{2}-P_{1}}=\left[\left(P_{2 X_{1}}-P_{1 X_{1}}\right)\left(P_{2 X_{2}}-P_{1 X_{2}}\right)\left(P_{2 X_{3}}-X_{1 X_{3}}\right) \ldots\left(P_{2 X_{n}}-P_{1 X_{n}}\right)\right]
$$

Vectors

- Examples: Vector in Two-dimensional Space

$$
\begin{aligned}
& V_{1}=\left[\begin{array}{ll}
(4-0) & (6-2)
\end{array}\right]=\left[\begin{array}{ll}
4 & 4
\end{array}\right] \\
& V_{2}=\left[\begin{array}{ll}
(1-4) & (5-1)
\end{array}\right]=\left[\begin{array}{ll}
-3 & 4
\end{array}\right] \\
& V_{3}=\left[\begin{array}{ll}
(-2-(-4)) & (4-0)
\end{array}\right]=\left[\begin{array}{ll}
2 & 4
\end{array}\right] \\
& V_{4}=\left[\begin{array}{ll}
(2-0) & (-4-0)
\end{array}\right]=\left[\begin{array}{ll}
4 & -4
\end{array}\right]
\end{aligned}
$$

Vectors

- Vector Operations
- The matrix operations of addition, subtraction, and multiplication can be applied to vectors.
- Two row (or column) vectors can be added or subtracted.
- A row vector with n elements can be postmultiplied by a column vector with n elements to equal a scalar value

Find $\boldsymbol{V}_{1}+3 \boldsymbol{V}_{2}, \boldsymbol{V}_{2}-2 \boldsymbol{V}_{1}$, and $\boldsymbol{V}_{1}^{\top} \boldsymbol{V}_{2}$ if

$$
V_{1}=\left[\begin{array}{l}
3 \\
1 \\
6 \\
0
\end{array}\right] \text { and } \quad V_{2}=\left[\begin{array}{c}
2 \\
-1 \\
4 \\
1
\end{array}\right]
$$

Vectors

- A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering

■ Example (cont'd): Vector Operations

$$
\begin{gathered}
V_{1}+3 V_{2}=\left[\begin{array}{l}
3 \\
1 \\
6 \\
0
\end{array}\right]+3\left[\begin{array}{c}
2 \\
-1 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
6 \\
0
\end{array}\right]+\left[\begin{array}{c}
6 \\
-3 \\
12 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
-2 \\
18 \\
3
\end{array}\right] \\
V_{2}-2 V_{1}=\left[\begin{array}{c}
2 \\
-1 \\
4 \\
1
\end{array}\right]-2\left[\begin{array}{l}
3 \\
1 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
4 \\
1
\end{array}\right]-\left[\begin{array}{c}
6 \\
2 \\
12 \\
0
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-3 \\
-8 \\
1
\end{array}\right]
\end{gathered}
$$

Vectors

- Orthogonal and Normalized Vectors
- Two vectors are said to be orthogonal if their product equals zero.
- For the vector product $\boldsymbol{A} \cdot \boldsymbol{B}, \boldsymbol{A}$ is a row vector and B is a column vector, the resulting vector product is a scalar value.
- If two vectors that are orthogonal are plotted in the n-dimensional space, the vectors will be perpendicular to each other.

Vectors

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
(6-2) & (5-1)
\end{array}\right]=\left[\begin{array}{ll}
4 & 4
\end{array}\right] \\
& B=\left[\begin{array}{ll}
(2-5) & (4-1)]=\left[\begin{array}{ll}
-3 & 3
\end{array}\right]
\end{array}\right. \text { 线 }
\end{aligned}
$$

Vectors

\cdot A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

- Example: Orthogonal Vectors

$$
A \bullet B=\left[\begin{array}{ll}
4 & 4
\end{array}\right]\left[\begin{array}{c}
-3 \\
3
\end{array}\right]=[-12+12]=[0]
$$

Since the vector product is zero, the vectors are perpendicular (orthogonal) to each other.

Vectors

- Length (magnitude) of a Vector

The length or magnitude of a vector \boldsymbol{V} equals the square root of the sum of the squares of its elements, that is

$$
\text { Length of } V=\|V\|=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}
$$

Vectors

- A. J. Clark School of Engineering \bullet Department of Civil and Environmental Engineering
- Normalized Vector
- A vector is said to be normalized if each elements of the vector is divided by its length.
- A normalized vector has a length that is equal to one.
- A unit vector is also a normalized vector.

Vectors

- Orthonormal Vectors

Two vectors that are both normalized and orthogonal to each other are said to orthonormal vectors

Vectors

- A. J. Clark School of Engineering \cdot Department of Civil and Environmental Engineering

Example

For the following vectors \boldsymbol{V}_{1} and \boldsymbol{V}_{2}, perform the following:

1. Find their lengths (magnitudes)
2. Normalize them,
3. State whether they are orthonormal

$$
V_{1}=\left[\begin{array}{lll}
2 & -3 & 5
\end{array}\right] \quad V_{2}=\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]
$$

Vectors

- Example (cont'd)

Length of $V_{1}=\sqrt{(2)^{2}+(-3)^{2}+(5)^{2}}=\sqrt{38}=6.164$
Length of $V_{2}=\sqrt{(-1)^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{3}=1.732$
The normalized vectors are:

$$
\begin{aligned}
& V_{n 1}=\left[\begin{array}{lll}
\frac{2}{\sqrt{38}} & \frac{-3}{\sqrt{38}} & \frac{5}{\sqrt{38}}
\end{array}\right] \\
& V_{n 2}=\left[\begin{array}{lll}
\frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}}
\end{array}\right]
\end{aligned}
$$

Since the $\boldsymbol{V}_{1} \boldsymbol{V}_{2}=0, \boldsymbol{V}_{1}$ and \boldsymbol{V}_{2} are orthogonal. $\boldsymbol{V}_{n 1}$ and $\boldsymbol{V}_{n 2}$ are orthonormal.

