
1

� A. J. Clark School of Engineering �Department of Civil and Environmental Engineering

by

Dr. Ibrahim A. Assakkaf
Spring 2001

ENCE 203 - Computation Methods in Civil Engineering II
Department of Civil and Environmental Engineering

University of Maryland, College Park

CHAPTER 2b.
MATRICES

© Assakkaf

Slide No. 29

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 2b. MATRICES

Types of Matrices

� Unit or Identity Matrix
� A unit (identity) matrix is a diagonal matrix 

with all the elements in the principal 
diagonal equal to one.

� The identity or unit matrix, designated by I
is worthy of special consideration.

� For any arbitrary matrix A, the following 
relationships hold true:

AI = A           and       IA = A
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Types of Matrices

� Unit or Identity Matrix
� Examples:
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Types of Matrices

� Null or Zero Matrix
� A null (zero) matrix is any matrix in which 

all the elements have zero values. It is 
usually denoted as 0.

� Examples:
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Types of Matrices

� Symmetric Matrix
� A symmetric matrix is a square matrix in 

which aij = aji.
� Examples:
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Types of Matrices

� Skew Symmetric
� A skew-symmetric matrix is square matrix 

with all values on the principal diagonal 
equal to zero and with off-diagonal values 
given such that aij = -aji.

� Examples:
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Types of Matrices

� Transposed Matrix
� Given a matrix A, the transpose of A, 

denoted by AT and read A-transpose, is 
obtained by changing all the rows of A into 
the columns of AT while preserving the 
order.

� Hence, the first row of A becomes the first 
column of AT, while the second row of A
becomes the second column of AT, and the 
last row of A becomes the last column of 
AT.
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Types of Matrices

� Transposed Matrix
� In terms of the elements,
� If matrix A has r rows and c columns, then 

AT will have c rows and r columns
� Note that

ji
T
ij aa =

( ) AA TT =
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Types of Matrices

� Examples Transposed Matrix
� Thus if

� and if 
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Matrix Operations

� The primary arithmetic operations are
� Addition
� Subtraction
� Multiplication, and
� Division

� Matrix algebra has operations called 
addition, subtraction, and multiplication.

� No division in matrix algebra, instead 
there is matrix inversion
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Matrix Operations

� Matrix Equality
� The simplest relationship between two 

matrices is equality.
� Intuitively, one feels that two matrices 

should be equal if their corresponding 
elements are equal.

� This the case provided that the two 
matrices are of the same order (size).
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Matrix Operations

� Matrix Equality
� Two matrices A = [aij]r×c and B = [bij]r×c are 

equal if they have the same order and if        
aij = aij for all i and j.

� Thus, the equality

implies that
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Matrix Operations

� Matrix Addition
� If A = [aij]r×c and B = [bij]r×c are both of order 

(size) r × c, then A + B is a r × c matrix 
[cij]r×c where

ijijij bac +=
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Matrix Operations

� Matrix Addition
� Examples:
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Matrix Operations

� Matrix Addition
� Examples:
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Matrix Operations

� Matrix Addition
� Examples:

� The following matrices A and B cannot be 
added since they are not of the same order.

� The equality C = A + B is not defined.
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Matrix Operations

� Matrix Subtraction
� If A = [aij]r×c and B = [bij]r×c are both of order 

(size) r × c, then A - B is a r × c matrix 
[cij]r×c where

ijijij bac −=
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Matrix Operations

� Matrix Subtraction
� Example:
















−

−
=
















=

112
487
320

  and   
11109
531
642

 If BA
















−=

















−−−
−−−−
−−−−

=−=
1097
1116
922

11111029
45)8(371

)3(62402
 Then, BAC



10

© Assakkaf

Slide No. 46

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 2b. MATRICES

Matrix Operations

� Commutative and Associative Laws
� If A, B, and C represent matrices of the 

same order, then
1) A + B = B +A
2) A + (B + C) = (A + B) + C
3) A + 0 = A
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Matrix Operations

� Commutative Law
� Matrix addition is not directional 

(commutative), that is

� Matrix subtraction is directional 
(noncommutative), that is

A + B = B +A

A - B ≠ B - A
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Matrix Operations

� Matrix Multiplication
� Two matrices are not multiplied together 

elementwise.
� It is not possible to multiply matrices of the 

same order while it is possible to multiply 
certain matrices of different orders.

� If A and B are two matrices for which 
multiplication is defined, it is generally not 
the case that AB = BA.
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Matrix Operations

� Matrix Multiplication
� General Rules

� Using A, B, and C to denote three matrices 
for the matrix product C = AB, the following 
are the rules for matrix multiplication:
1. The number of columns in the first matrix A must 

equal the number of rows in the second matrix B.
2. The number of rows in the product matrix C equals 

the number of rows in the first matrix A.
3. The number of columns in the product matrix C

equals the number of columns in the second matrix 
B.
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Matrix Operations

� Matrix Multiplication
� General Rules

4. The element of matrix C in row i and column j (cij) is 
equal to the sum of the products aik bkj:

∑
=

=
m

k
kjikij bac

1

where m is the number of columns in AAAA, which is
also the number of rows in BBBB.
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Matrix Operations

� Matrix Multiplication
� General Rules

5. Matrix multiplication is not commutative, that is,

6. Matrix multiplication is associative, that is,

AB ≠ BA

(AB) C = A (BC)
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Matrix Operations

� Matrix Multiplication
� Multiplication Terms

� Premultiplication of B by A means AB.
� Premultiplication of A by B means BA.
� Post multiplication of A by B means AB.
� Post multiplication of B by A means BA.
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Matrix Operations

� Matrix Multiplication
� Rule 1:

The product of two matrices AB is defined if the 
number of columns of A equals the number of 
rows of B
Thus, if A and B are given by
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Matrix Operations

� Matrix Multiplication
� Rule 1(cont�d):

then the product AB is defined since A has 
three columns and B has three rows.  The 
product BA, however is not defined since B
has four columns while A has only two rows.

When the product is written as AB, A is said to 
premultiply B while B is said to postmultiply A.
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Matrix Operations

� Matrix Multiplication
� Rule 2:

If the product AB is defined, then the resultant 
matrix will have the same number of rows as A
and the same number of columns as B.
Thus, if A and B are given by
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Matrix Operations

� Matrix Multiplication
� Rule 2(cont�d):

then, the product C = AB will have two rows 
and four columns since A has two rows and B
has four columns.
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Matrix Operations

� Matrix Multiplication
� Easy Method for Rules 1 and 2

� Write the orders of the matrices on paper in the 
sequence in which the multiplication is to be 
carried out, that is, if AB is to be found where A
has order (rA × cA) and B has order (rB × cB), 
write

(rA × cA) (rB × cB)
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Matrix Operations

� Matrix Multiplication
� Easy Method for Rules 1 and 2 (cont�d)

� If the two adjacent numbers (indicated by the 
arrows) cA and rB are equal, then the 
multiplication is defined.

� The order of the product matrix C = AB is 
obtained by canceling the adjacent numbers 
and using the two remaining numbers, that is, 
the order of C is rA × cB

( )( )BBAA crcr ××

order of C
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Matrix Operations

� Matrix Multiplication
� Easy Method for Rules 1 and 2 (cont�d

� Examples:
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(2 × 3) (3 × 4) 

The matrix product C = AB is defined.
The order of AB is 2 × 4
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Matrix Operations

� Matrix Multiplication
� Easy Method for Rules 1 and 2 (cont�d

� Examples:
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The matrix product C = BA is not defined.
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Matrix Operations

� Matrix Multiplication
� Rule 3:

If the matrix product AB is defined, where C is 
denoted by [cij], then the element cij is obtained 
by multiplying the elements in the ith row of A
by the corresponding elements in the jth column 
of B and adding.
Thus, if A has order rA × cA, B has order 
rB × cB, cA = rB, and 
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Matrix Operations

� Rule 3 (cont�d):

then, c11 is obtained by multiplying the 
elements in the first row of A by the 
corresponding elements in the first column of B
and adding; hence, 





















=









































CCCC

C

C

BBBB

B

B

AAAA

A

A

crrr

c

c

crrr

c

c

crrr

c

c

ccc

ccc
ccc

bbb

bbb
bbb

aaa

aaa
aaa

L

MMMM

K

K

L

MMMM

K

K

K

MMMM

K

K

21

22221

12111

21

22221

11211

21

22221

11211

 

112112111111 BA rc bababac +++= L

© Assakkaf

Slide No. 63

� A. J. Clark School of Engineering � Department of Civil and Environmental Engineering

ENCE 203 � CHAPTER 2b. MATRICES

Matrix Operations

� Rule 3 (cont�d):

the element c12 is obtained by multiplying the 
elements in the first row of A by the 
corresponding elements in the second column 
of B and adding; hence, 
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Matrix Operations

� Rule 3 (cont�d):

the element is obtained by multiplying the 
elements in the first row of A by the 
corresponding elements in the second column 
of B and adding; hence, 
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Matrix Operations

� Example: Matrix Multiplication
Find AB and BA if
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The matrix product AB is defined with an order of 2 × 2
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Matrix Operations

� Example (cont�d): Matrix Multiplication
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Matrix Operations

� Example (cont�d): Matrix Multiplication
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The matrix product BA is defined with an order of 3 × 3
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Matrix Operations

� Example (cont�d): Matrix Multiplication
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Matrix Operations

� Matrix Multiplication by a Scalar
� The multiplication of a matrix A by a scalar 

s has the effect of multiplying each element 
aij in the matrix by the scalar.  The resulting 
elements of a matrix B can be expressed 
as

ijij sab =
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Matrix Operations

� Matrix Multiplication by a Scalar
� Example:

Find B = sA if s = 5, and 
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