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Other Continuous Probability 
Distributions

These distribution are classified as
– Distribution used in statistical analyses

• Student-t, or t Distribution

• F Distribution 

• Chi-square (χ2) Distribution

– Extreme Value Distribution
• Type I

• Type II

• Type III
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Other Continuous Probability 
Distributions

Student-t, or t Distribution
• The student-t or t distribution is a symmetric, 

bell-shaped distribution with the following 
density function 
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Other Continuous Probability 
Distributions

– The gamma function has the following 
useful properties:

– As k increases toward infinity, the variance 
of the t distribution approaches unity, and 
therefore it approaches the standard 
normal distribution
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Other Continuous Probability 
Distributions

Properties of the t distribution
• It is of interest in statistical analysis to 

determine the percentage points tα,k that 
correspond to the following probability:

• The percentage points are usually provided in 
tables.  For the lower tail, the following 
relationship can be used:
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Other Continuous Probability 
Distributions

Critical Values for t Distribution

t
kt ,α0

( )tfT

( ) α  areaP ,α ==> ktT

0.25 0.1 0.05 0.025 0.005
1 1.000001 3.077685 6.313749 12.70615 63.6559
2 0.816497 1.885619 2.919987 4.302656 9.924988
3 0.764892 1.637745 2.353363 3.182449 5.840848
4 0.740697 1.533206 2.131846 2.776451 4.60408
5 0.726687 1.475885 2.015049 2.570578 4.032117
6 0.717558 1.439755 1.943181 2.446914 3.707428
7 0.711142 1.414924 1.894578 2.364623 3.499481
8 0.706386 1.396816 1.859548 2.306006 3.355381
9 0.702722 1.383029 1.833114 2.262159 3.249843
10 0.699812 1.372184 1.812462 2.228139 3.169262
11 0.697445 1.36343 1.795884 2.200986 3.105815
12 0.695483 1.356218 1.782287 2.178813 3.054538
13 0.69383 1.350172 1.770932 2.160368 3.012283
14 0.692417 1.345031 1.761309 2.144789 2.976849
15 0.691197 1.340605 1.753051 2.131451 2.946726
16 0.690133 1.336757 1.745884 2.119905 2.920788
17 0.689195 1.333379 1.739606 2.109819 2.898232
18 0.688364 1.330391 1.734063 2.100924 2.878442
19 0.687621 1.327728 1.729131 2.093025 2.860943
20 0.686954 1.325341 1.724718 2.085962 2.845336

Degrees of 
Freedom, K

Level of Significance,α
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Other Continuous Probability 
Distributions

Example: Student-t Distribution
1. Find P(-t0.025,10 < T < t0.05,10)

2. Find t1 such that P(t1 < T < -1.761) = 0.045, and k = 14

Since t0.05,10 leaves an area of 0.05 to the right and –t0.025,10 leaves an area
Of 0.025 to the left, therefore,

From the table, 1.761 corresponds to t0.05, 14 when k = 14
Therefore, -t0.05, 14 = -1.761.  Since t1 in the original probability statement
Is to the left of –t0.05, 14 = -1.761, let t1 = -tα,14.  Then from the following
figure we have

0.045=0.05 - α

( ) 925.0025.005.01P 10,05.010,025.0 =−−=<<− tTt
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Other Continuous Probability 
Distributions

Example: Student-t Distribution
Or  α = 0.005

From the table with k =14

t
kt ,α0

( )tfT

( ) 045.0761.1977.2P
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Other Continuous Probability 
Distributions

The F Distribution
The F distribution has two shape parameters ν1 = 
k and ν2 = u, and has the following PDF:
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Other Continuous Probability 
Distributions

The F Distribution
• The distribution is positively skewed with a 

shape that depends on k and u.

• It is of interest in statistical analysis to 
determine the percentage points fα,k,u that 
correspond to the following probability:
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The F Distribution
• The percentage points are usually provided in 

mathematical book tables.

• The F distribution has a unique property that 
allows tabulating values for the upper tail only.

• For the lower tail, the following relation can be 
used to find the percentage points:
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Other Continuous Probability 
Distributions
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The F Distribution

Second 
degrees of 
freedom, u

1 2 3 4 5 6
11 4.844338 3.982308 3.587431 3.356689 3.20388 3.094613

9.646101 7.205699 6.216737 5.668312 5.315997 5.069182
12 4.747221 3.88529 3.4903 3.25916 3.105875 2.996117

9.330279 6.926598 5.952529 5.411948 5.064351 4.820549
13 4.667186 3.805567 3.410534 3.179117 3.025434 2.915272

9.073801 6.70093 5.739366 5.205322 4.86159 4.620347
14 4.600111 3.73889 3.343885 3.112248 2.958245 2.847727

8.861662 6.514938 5.563891 5.035417 4.694982 4.455842
15 4.543068 3.682317 3.287383 3.055568 2.901295 2.790465

8.683173 6.358846 5.41695 4.893195 4.555602 4.318281
17 4.451323 3.591538 3.196774 2.964711 2.809998 2.698656

8.399752 6.112145 5.185029 4.668948 4.335959 4.10148
20 4.35125 3.492829 3.098393 2.866081 2.710891 2.598981

8.095981 5.84896 4.938215 4.430717 4.102674 3.871435

First degrees of freedom, k

Upper values for 5% (First row) and 1% (second row) Significance Level α

Other Continuous Probability 
Distributions
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Chi-square (χ2) Distribution
– This distribution is frequently encountered 

in statistical analysis, where we deal with 
the sum of squares of k random variables 
with standard normal distribution, 

– Where C = random variable with chi-
square, and Z1 to Zk are normally 
distributed (standard normal)

22
2

2
1

2 ...χ kZZZC +++==

Other Continuous Probability 
Distributions
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Chi-square (χ2) Distribution
• The probability density function (PDF) of the 

chi-square distribution is 
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Distributions
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Other Continuous Probability 
Distributions

Chi-square (χ2) Distribution
• This distribution is positively skewed with a 

shape that depends on the parameter k.

• It is of interest in statistical analysis to 
determine the percentage points cα,k that 
correspond to the following probability:

These percentage points are usually provided in 
tables.
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Other Continuous Probability 
Distributions

Extreme Value Distributions
• In many engineering applications, the extreme 

values of random variables are of special 
importance.

• The largest or smallest values of random 
variables may dictate a particular design.

• Wind speeds, for example, are recorded 
continuously at airports and weather stations.  
The maximum wind speeds per hour, month, 
day, year, or other period can be used for this 
purpose
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Other Continuous Probability 
Distributions

Extreme Value Distributions
• Usually, the information on yearly maximum 

wind speed is used in engineering profession.

• If the design wind speed has a 50-year return 
period, then the probability that the wind speed 
will exceed the design value in a year is 1/50 = 
0.02.

• Design of earthquake loads, flood levels, and 
so forth are also determined in this manner.
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Other Continuous Probability 
Distributions

Extreme Value Distributions
• In some cases, the minimum value of a random 

variable is also of interest for design 
applications.

• For example, when a large number of identical 
devices, such as calculators or cars, are 
manufactured, their minimum service lives are 
of great interest to consumers.

• In constructing an extreme value distribution, 
an underlying random variable with a particular 
distribution is necessary.



10

CHAPTER 9. THEORETICAL PROBABILITY MODELS Slide No. 138
ENCE 627 ©Assakkaf

Other Continuous Probability 
Distributions

Engineering Significance of Extreme 
Values
– In structural reliability and safety, the 

maximum loads and low structural 
resistance are the values most relevant to 
assure safety or reliability of a structure.

– The prediction of future conditions is often 
required in engineering design, and may 
involve the prediction of the largest or 
smallest value.
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Other Continuous Probability 
Distributions

Engineering Significance of Extreme 
Values
– Therefore, extrapolation from previously 

observed extreme value data is invariably 
necessary.

– The asymptotic theory provides a powerful 
basis for developing the required 
engineering information.
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Type I Extreme Value Distributions
– Two forms of the Type I extreme value 

distribution can be used:
• The largest extreme value

• The smallest extreme value

Other Continuous Probability 
Distributions
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Other Continuous Probability 
Distributions

The Type I Extreme Value Distribution 
(Largest)

• The probability density function (PDF) of the 
Type I for largest distribution is 
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Other Continuous Probability 
Distributions

The Type I Extreme Value Distribution 
(Smallest)

• The probability density function (PDF) of the 
Type I for smallest distribution is 
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Applications of Type I Distribution
– Strength of brittle materials (Johnson 1953) 

can be described by Type I smallest value
– Hydrological phenomena such as the 

maximum daily flow in a year or the annual 
peak flow hourly discharge during flood 
(Chow 1952)

– Wind maximum velocity in a year.

Other Continuous Probability 
Distributions
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Example: Type I Largest
The data on maximum wind velocity Vn at a site 

have been compiled for n years, and its mean 
and standard deviation are estimated to be 
61.3 mph and 7.52 mph, respectively.  
Assuming that Vn has a Type I extreme value 
distribution, what is the probability that the 
maximum wind velocity will exceed 100 mph in 
any given year?

Other Continuous Probability 
Distributions
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Example (cont’d): Type I Largest
The parameters un and αn can be calculated as

The probability that the maximum wind velocity is 
greater than 100 mph is

( )
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Other Continuous Probability 
Distributions
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Example: Type I Largest
Suppose that in the previous example the design 

wind speed with a return period of 100 years 
needs to be estimated for a particular site.  
With Vd denoted as the design wind speed to 
be estimated, the probability that it will be 
exceeded in a given year is 1/100 = 0.01. Thus,
( ) ( )

( )[ ] mph 89.84       01.0-exp-1

or

01.01P

9157.5717055.0 =⇒=

=−=>

−−
d
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dXdn
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VFVX

d

n

Other Continuous Probability 
Distributions
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The Type II Extreme Value Distribution
– Largest

– Smallest

The Type III Extreme Value Distribution
– Largest

– Smallest

Other Continuous Probability 
Distributions
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Type II
– Largest
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Type II
– Largest
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Distributions
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Other Continuous Probability 
Distributions

Gamma Function Properties

Mathematical handbooks usually contain 
tabulated values of the gamma function
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Other Continuous Probability 
Distributions

Extreme Value 
Distribution –
Coefficient of 
Variation versus the 
parameter k
(Benjamin and 
Cornell, 1970)
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Other Continuous Probability 
Distributions

Example, Type II: Wind Velocity
In Boston, Massachusetts, the measured 

data suggest that the mean and standard 
deviation of the maximum annual wind 
velocity are 55 mph and 12.8 mph, 
respectively.  What is the velocity y which 
will be exceeded with a probability value of 
0.02?
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Other Continuous Probability 
Distributions

Example, Type II (cont’d): Wind Velocity
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Other Continuous Probability 
Distributions

Example, Type II (cont’d): Wind Velocity
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Type II
– Smallest
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Other Continuous Probability 
Distributions

Type II
– Smallest
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Other Continuous Probability 
Distributions

Type III
– Largest
– Smallest

• Most useful applications of this model deal with 
smallest values.
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Type III
– Smallest
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Other Continuous Probability 
Distributions

Type III
– Smallest
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